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recommender systems
getting set up

install 
scikit-surprise

install 
anaconda

download course 
materials
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let’s do 
this.
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sundog-education.com/RecSys
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setup walkthrough
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course overview
• getting started
• intro to python
• evaluating recommender systems
• building a recommendation engine
• content-based filtering
• neighborhood-based collaborative filtering
• model-based methods
• intro to deep learning
• recommendations with deep learning
• scaling it up
• challenges of recommender systems
• case studies
• hybrid solutions
• more to explore
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optional sections

• intro to python
• intro to deep learning
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what is a 
recommender system
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what it is not

A recommender system is NOT a system that “recommends” arbitrary values.

That describes machine learning in general.
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for example

A system that “recommends” prices for a house you’re 
selling is NOT a recommender system.

A system that “recommends” whether a transaction is 
fraudulent is NOT a recommender system.

These are general machine learning problems, where 
you’d apply techniques such as 
Regression, deep learning, XGBoost, or other 
techniques.

If that’s what you’re looking for, you want a more 
general machine learning course.
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what it is

A system that predicts ratings or preferences a user might give to an item

Often these are sorted and presented as “top-N” recommendations

Also known as recommender engines, recommendation systems, recommendation platforms.
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this is a recommender engine
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many flavors of 
recommenders
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recommending 
things



sundog-education.com 15

recommending 
content
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recommending 
music
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recommending 
people



sundog-education.com 18

recommending 
search results
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understanding you
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understanding 
you… explicitly
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understanding 
you… implicitly

things you
purchase

things you 
click on

things you 
consume
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top-N 
recommenders
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(one) anatomy of a 
top-N recommender

individual 
interests

item 
similarities

candidate 
generation

candidate 
ranking

filtering
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another way to do it

rating 
predictions

candidate 
generation

candidate 
ranking

filtering
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quiz time
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which of the 
following are 
examples of 

implicit ratings?

• star reviews
• purchase data
• video viewing data
• click data
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which of the 
following are 
examples of 

implicit ratings?

• star reviews
• purchase data
• video viewing data
• click data
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which are examples of 
recommender systems?

• netflix’s home page
• google search
• amazon’s “people who bought also bought…”
• pandora
• online radio stations
• youtube
• wikipedia search
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which are examples of 
recommender systems?

• netflix’s home page
• google search
• amazon’s “people who bought also bought…”
• pandora
• online radio stations
• youtube
• wikipedia search
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03

which are examples of “Top-N” 
recommenders?

• netflix recommendation widgets
• google search
• amazon “people who bought also bought”
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03

which are examples of “Top-N” 
recommenders?

• netflix recommendation widgets
• google search
• amazon “people who bought also bought”
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04

which are components of 
a top-N recommender?

• candidate generation
• filtering

• candidate shuffling
• ranking
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04

which are components of 
a top-N recommender?

• candidate generation
• filtering

• candidate shuffling
• ranking
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intro to 
python
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code walkthrough
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evaluating 
recommender 

systems
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train/test

full data set (movie ratings, etc.)

training set test set

machine 
learning

predictions

measure
accuracy
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k-fold cross-
validation

full data set (movie ratings, etc.)

fold 1 fold 2 fold k-1 test set…

machine 
learning

machine 
learning

machine 
learning

measure 
accuracy

measure 
accuracy

measure 
accuracy

take average
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measuring 
accuracy
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mean absolute 
error (MAE)

∑𝑖𝑖=1𝑛𝑛 𝑦𝑦𝑖𝑖 − 𝑥𝑥𝑖𝑖
𝑛𝑛

predicted rating
5
4
5
1

actual rating
3
1
4
1

error
2
3
1
0

MAE = (2+3+1+0)/4 = 1.5
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root mean square 
error (RMSE)

∑𝑖𝑖=1𝑛𝑛 𝑦𝑦𝑖𝑖 − 𝑥𝑥𝑖𝑖 2

𝑛𝑛

predicted rating
5
4
5
1

actual rating
3
1
4
1

𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝟐𝟐
4
9
1
0

RMSE= (4 + 9 + 1 + 0)/4 = 1.87
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how did we get 
here?
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evaluating top-n 
recommenders

hit rate
ℎ𝑖𝑖𝑖𝑖𝑖𝑖
𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢
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leave-one-out cross 
validation
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average reciprocal 
hit rate (ARHR)

∑𝑖𝑖=1𝑛𝑛 1
𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖

𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈

rank

3
2
1

reciprocal rank

1/3
1/2
1
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cumulative hit rate 
(cHR)

hit rank
4
2
1

10

predicted (or actual) rating
5.0
3.0
5.0
2.0
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rating hit rate (rHR)

rating
5.0
4.0
3.0
2.0
1.0

hit rate
0.001
0.004
0.030
0.001

0.0005
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coverage

% of <user, item> pairs that can be predicted
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diversity

(1 – S)
S = avg similarity between recommendation pairs
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novelty

mean popularity rank of recommended items
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the long tail
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churn

how often do 
recommendations change?
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responsiveness

how quickly does new 
user behavior influence 
your recommendations?
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what’s important?
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online A/B tests!



sundog-education.com 56

perceived quality
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quiz time



sundog-education.com 5801

which metric was 
used to evaluate 
the netflix prize?
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which metric was 
used to evaluate 
the netflix prize?

root mean squared error (RMSE)
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what’s a metric for top-n 
recommenders that 
accounts for the rank of 
predicted items?
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what’s a metric for top-n 
recommenders that 
accounts for the rank of 
predicted items?

average reciprocal hit rank
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03

which metric measures how popular or 
obscure your recommendations are?
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03

which metric measures how popular or 
obscure your recommendations are?

novelty
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04

which metric would tell us if we’re recommending 
the same types of things all the time?
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04
diversity

which metric would tell us if we’re recommending 
the same types of things all the time?
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which metric 
matters more 

than anything?
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which metric 
matters more 

than anything?

the results of online a/b tests
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code walkthrough
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code walkthrough
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code walkthrough
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building a 
recommender engine
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surpriselib algorithm 
base class

AlgoBase

SVD KNNBasic SVDpp Custom
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creating a custom 
algorithm

class MyOwnAlgorithm(AlgoBase): 

 def __init__(self): 
  AlgoBase.__init__(self) 

 def estimate(self, user, item): 
  return 3 

implement an estimate function



sundog-education.com 74

building on top of 
surpriselib

EvaluatedAlgorithm(AlgoBase)

algorithm: AlgoBase
Evaluate(EvaluationData)

EvaluationData(Dataset)

GetTrainSet()
GetTestSet()
…

RecommenderMetrics
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algorithm bake-offs

Evaluator(DataSet)

AddAlgorithm(algorithm)
Evaluate()

dataset: EvaluatedDataSet
algorithms: EvaluatedAlgorithm[]
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it’s just this easy
# Load up common data set for the recommender algorithms
(evaluationData, rankings) = LoadMovieLensData()

# Construct an Evaluator to, you know, evaluate them
evaluator = Evaluator(evaluationData, rankings)

# Throw in an SVD recommender
SVDAlgorithm = SVD(random_state=10)
evaluator.AddAlgorithm(SVDAlgorithm, "SVD")

# Just make random recommendations
Random = NormalPredictor()
evaluator.AddAlgorithm(Random, "Random")

# Fight!
evaluator.Evaluate(True)
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let’s jump in
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code walkthrough
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content-based 
filtering
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examples of movie 
attributes
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movielens genre 
data

movieId title genres

1Toy Story (1995) Adventure|Animation|Children|Comedy|Fantasy
2Jumanji (1995) Adventure|Children|Fantasy
3Grumpier Old Men (1995) Comedy|Romance
4Waiting to Exhale (1995) Comedy|Drama|Romance
5Father of the Bride Part II (1995) Comedy

Action* Adventure* Animation* Children's* Comedy* 
Crime* Documentary* Drama* Fantasy* Film-Noir* Horror* 
Musical* Mystery* Romance* Sci-Fi* Thriller* War* 
Western
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cosine similarity

comedy

adventure

𝜃𝜃
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multi-dimensional 
space!
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convert genres to 
dimensions

Movie action adventure animation children's comedy crime documentary drama fantasy film-noir horror musical western mystery romance sci-fi thriller war western2

Toy Story 0 1 1 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0

Jumanji 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

Grumpier Old Men 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0

Waiting to Exhale 0 0 0 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0

Father of the Bride 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0title genres
1Toy Story (1995) Adventure|Animation|Children|Comedy|Fantasy
2Jumanji (1995) Adventure|Children|Fantasy
3Grumpier Old Men (1995) Comedy|Romance
4Waiting to Exhale (1995) Comedy|Drama|Romance
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multi-dimensional 
cosines

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑥𝑥,𝑦𝑦 =
∑𝑖𝑖 𝑥𝑥𝑖𝑖𝑦𝑦𝑖𝑖

∑𝑖𝑖 𝑥𝑥𝑖𝑖2 ∑𝑖𝑖 𝑦𝑦𝑖𝑖2
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turning it into code

def computeGenreSimilarity(self, movie1, movie2, genres):
        genres1 = genres[movie1]
        genres2 = genres[movie2]
        sumxx, sumxy, sumyy = 0, 0, 0
        for i in range(len(genres1)):
            x = genres1[i]
            y = genres2[i]
            sumxx += x * x
            sumyy += y * y
            sumxy += x * y
        
        return sumxy/math.sqrt(sumxx*sumyy)

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑥𝑥,𝑦𝑦 =
∑𝑖𝑖 𝑥𝑥𝑖𝑖𝑦𝑦𝑖𝑖

∑𝑖𝑖 𝑥𝑥𝑖𝑖2 ∑𝑖𝑖 𝑦𝑦𝑖𝑖2
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release years

Toy Story (1995)
Jumanji (1995)
Grumpier Old Men (1995)
Waiting to Exhale (1995)
Father of the Bride Part II (1995)
Heat (1995)
Sabrina (1995)
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time similarity

def computeYearSimilarity(self, movie1, movie2, years):
        diff = abs(years[movie1] - years[movie2])
        sim = math.exp(-diff / 10.0)
        return sim
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k-nearest-neighbors

Similarity scores 
between this 
movie and all 

others the user 
rated

Top 40 
nearest 
movies

Sort Weighted 
average

Rating 
prediction
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knn code

# Build up similarity scores between this item and everything the user rated
        neighbors = []
        for rating in self.trainset.ur[u]:
            genreSimilarity = self.similarities[i,rating[0]]
            neighbors.append( (genreSimilarity, rating[1]) )
        
        # Extract the top-K most-similar ratings
        k_neighbors = heapq.nlargest(self.k, neighbors, key=lambda t: t[0])
        
        # Compute average sim score of K neighbors weighted by user ratings
        simTotal = weightedSum = 0
        for (simScore, rating) in k_neighbors:
            if (simScore > 0):
                simTotal += simScore
                weightedSum += simScore * rating
            
        if (simTotal == 0):
            raise PredictionImpossible('No neighbors')

        predictedRating = weightedSum / simTotal

        return predictedRating
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let’s dive in
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code walkthrough
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implicit ratings
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a note about 
implicit ratings.

the algorithms we cover work just as well with 
implicit ratings as explicit ratings.

implicit ratings would be things like clicking on 
a link, purchasing something – doing 
something that is an implicit indication of 
interest instead of an explicit rating.



sundog-education.com 95

implicit data can be 
powerful

it tends to be plentiful

implicit purchase ratings can be higher quality than explicit ratings
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using implicit data

just model a click / purchase / whatever as a positive rating of some 
arbitrary (yet consistent) value.

do NOT model the absence of a click / purchase as a negative rating – 
it’s just missing data.

the math generally works out the same.
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not all implicit ratings are 
created equal.

purchases good.

clicks not so much.



sundog-education.com 98

bleeding edge alert!
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mise en scène
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mise en scène data
Column # Column Name Description

1 ML_ID MovieLens movie ID

2 f1 Average shot length

3 f2 Mean of color variance 
across the key Frames

4 f3 Standard deviation of 
color variance across the 
key Frames

5 f4 Mean of motion average 
across all the frames

6 f5 Mean of motion standard 
deviation across all the 
frames

7 f6 Mean of lighting key 
across the key frames

8 f7 Number of shots
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code walkthrough
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credits

Yashar Deldjoo, Mehdi Elahi, Paolo Cremonesi “Using 
Visual Features and Latent Factors for Movie 
Recommendation”, ACM RecSys Workshop on New Trends 
in Content-based Recommender Systems (CBRecSys), 
ACM RecSys 2016, Massachusetts Institute of Technology 
(MIT), September 15-19, 2016

http://recsys.deib.polimi.it/?page_id=353
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exercise

which content attribute 
is most powerful in 
producing “good” 
recommendations?

genre, release year, or 
mise en scene?
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my results

genre
RMSE: 0.9552

Black Mask (Hak hap) (1996) 
Joy Ride (2001)
What's Up, Tiger Lily? (1966) Missing, 
The (2003) 
City of God (Cidade de Deus) (2002) 
24: Redemption (2008) 
The Hateful Eight (2015) 
Wyatt Earp (1994) 
True Grit (2010) 
Shooter, The (1997)

mise en scene
RMSE: 1.0663

Pain & Gain (2013)
Bring It On (2000)
Young Master, The (Shi di chu ma) 
(1980)
Celebrity (1998)
Yi Yi (2000)
Eating Raoul (1982)
Stuck on You (2003)
Cat Returns, The (Neko no ongaeshi) 
(2002)
Reckless (1984)
Sunless (Sans Soleil) (1983)

year
RMSE: 0.9626

Clerks (1994)
Disclosure (1994)
Ed Wood (1994)
Houseguest (1994)
Legends of the Fall (1994)
Madness of King George, The (1994)
Mary Shelley's Frankenstein 
(Frankenstein) (1994)
Quiz Show (1994)
Secret of Roan Inish, The (1994)
Shallow Grave (1994)
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better year-based 
recs

In Evaluator.py’s SampleTopNRecs:

print ("\nWe recommend:")
            for userID, movieID, actualRating, estimatedRating, _ in predictions:
                intMovieID = int(movieID)
                recommendations.append((intMovieID, estimatedRating, ml.getPopularityRanks()[intMovieID]))
            
    recommendations.sort(key=lambda x: x[2])
            recommendations.sort(key=lambda x: x[1], reverse=True)

We recommend:
Clerks (1994) 3.37112480076
Quiz Show (1994) 3.37112480076
Ed Wood (1994) 3.37112480076
Legends of the Fall (1994) 3.37112480076
Crow, The (1994) 3.37112480076
Hoop Dreams (1994) 3.37112480076
Muriel's Wedding (1994) 3.37112480076
Disclosure (1994) 3.37112480076
Adventures of Priscilla, Queen of the Desert, The (1994) 3.37112480076
River Wild, The (1994) 3.37112480076
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neighborhood-
based 

collaborative 
filtering
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(one) anatomy of a 
top-N recommender

individual 
interests

item 
similarities

candidate 
generation

candidate 
ranking

filtering
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ways to measure similarity
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cosine similarity

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑥𝑥,𝑦𝑦 =
∑𝑖𝑖 𝑥𝑥𝑖𝑖𝑦𝑦𝑖𝑖

∑𝑖𝑖 𝑥𝑥𝑖𝑖2 ∑𝑖𝑖 𝑦𝑦𝑖𝑖2
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sparsity

Indiana Jones Star Wars Shape of Water Incredibles Casablanca
Bob 4
Ted
Alice 5
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adjusted cosine

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑥𝑥,𝑦𝑦 =
∑𝑖𝑖 𝑥𝑥𝑖𝑖 − 𝑥̅𝑥 𝑦𝑦𝑖𝑖 − �𝑦𝑦
∑𝑖𝑖 𝑥𝑥𝑖𝑖 − 𝑥̅𝑥 2 ∑𝑖𝑖 𝑦𝑦𝑖𝑖 − �𝑦𝑦 2
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(item-based) pearson similarity

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑥𝑥,𝑦𝑦 =
∑𝑖𝑖 𝑥𝑥𝑖𝑖 − ̅𝚤𝚤 𝑦𝑦𝑖𝑖 − ̅𝚤𝚤
∑𝑖𝑖 𝑥𝑥𝑖𝑖 − ̅𝚤𝚤 2 ∑𝑖𝑖 𝑦𝑦𝑖𝑖 − ̅𝚤𝚤 2
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spearman rank correlation

pearson similarity based on ranks, not ratings
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mean squared difference

𝑀𝑀𝑀𝑀𝑀𝑀 𝑥𝑥,𝑦𝑦 =
∑𝑖𝑖∈𝐼𝐼𝑥𝑥𝑥𝑥 𝑥𝑥𝑖𝑖 − 𝑦𝑦𝑖𝑖 2

𝐼𝐼𝑥𝑥𝑥𝑥

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑥𝑥,𝑦𝑦 =
1

𝑀𝑀𝑀𝑀𝑀𝑀 𝑥𝑥,𝑦𝑦 + 1
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jaccard similarity



sundog-education.com 116

recap

cosine

adjusted cosine

pearson

spearman

msd

jaccard
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user-based 
collaborative 

filtering
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user-based 
collaborative filtering
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user-based collaborative 
filtering
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user-based 
collaborative filtering

Indiana Jones Star Wars Empire Strikes Back Incredibles Casablanca
Bob 4 5
Ted 1
Ann 5 5 5
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user-based 
collaborative filtering

Bob Ted Ann
Bob 1 0 1
Ted 0 1 0
Ann 1 0 1

Indiana Jones Star Wars Empire Strikes Back Incredibles Casablanca
Bob 4 5
Ted 1
Ann 5 5 5
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user-based 
collaborative filtering

Bob Ted Ann
Bob 1 0 1
Ted 0 1 0
Ann 1 0 1

Bob’s neighbors: Ann: 1.0, Ted: 0
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candidate 
generation
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candidate scoring

1.0 1.0 1.0
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candidate sorting

1.0 1.0
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candidate filtering

1.0 1.0

X
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user-based collaborative 
filtering

• user -> item rating matrix
• user -> user similarity matrix
• look up similar users
• candidate generation
• candidate scoring
• candidate filtering
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code walkthrough
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item-based 
collaborative 

filtering
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things, not people
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item-based collaborative 
filtering

Bob Ted Ann
Indiana Jones 4
Star Wars 5 5
Empire Strikes Back 5
Incredibles 5
Casablanca 1
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item-based collaborative 
filtering

Indiana Jones Star Wars Empire Strikes Back Incredibles Casablanca
Indiana Jones 1 1 0 0 0
Star Wars 1 1 1 1 0
Empire Strikes Back 1 1 1 1 0
Incredibles 1 1 1 1 0
Casablanca 0 0 0 0 1
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item-based collaborative 
filtering
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code walkthrough
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exercise

Build recommendation candidates from items above a 
certain rating or similarity threshold, instead of the top 
10.
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exercise solution: 
item-based

#kNeighbors = heapq.nlargest(k, testUserRatings, key=lambda t: t[1])
kNeighbors = []
for rating in testUserRatings:
    if rating[1] > 4.0:
        kNeighbors.append(rating)

after
Kiss of Death (1995)
Amos & Andrew (1993)
Edge of Seventeen (1998)
Get Real (1998)
Grace of My Heart (1996)
Relax... It's Just Sex (1998)
My Crazy Life (Mi vida loca) (1993) 
Set It Off (1996)
Bean (1997)
Joe's Apartment (1996)
Lost & Found (1999)

before
James Dean Story, The (1957)
Get Real (1998)
Kiss of Death (1995)
Set It Off (1996)
How Green Was My Valley (1941)
Amos & Andrew (1993)
My Crazy Life (Mi vida loca) (1993)
Grace of My Heart (1996)
Fanny and Alexander (Fanny och Alexander) (1982) 
Wild Reeds (Les roseaux sauvages) (1994) 
Edge of Seventeen (1998)
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exercise solution: 
user-based

#kNeighbors = heapq.nlargest(k, similarUsers, key=lambda t: t[1])
kNeighbors = []
for rating in similarUsers:
    if rating[1] > 0.95:
        kNeighbors.append(rating)

after
Star Wars: Episode IV - A New Hope (1977) 
Matrix, The (1999) 
Star Wars: Episode V - The Empire Strikes Back (1980) 
Fight Club (1999)
Back to the Future (1985)
Raiders of the Lost Ark (1981)
American Beauty (1999)
Toy Story (1995)
Godfather, The (1972)
Star Wars: Episode VI - Return of the Jedi (1983) 
Lord of the Rings: The Fellowship of the Ring, The (2001)

before
Inception (2010) 
Star Wars: Episode V - The Empire Strikes Back (1980) 
Bourne Identity, The (1988) 
Crouching Tiger, Hidden Dragon (Wo hu cang long) (2000) 
Dark Knight, The (2008)
Good, the Bad and the Ugly, The (Buono, il brutto, il cattivo, Il) (1966) 
Departed, The (2006) 
Dark Knight Rises, The (2012) 
Back to the Future (1985) 
Gravity (2013) 
Fight Club (1999)
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evaluating collaborative 
filtering
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exercise

measure the hit-rate of item-based collaborative filtering.



sundog-education.com 140

exercise solution

sim_options = {'name': 'cosine',
               'user_based': False
               }

for uiid in range(trainSet.n_users):
    
    userRatings = trainSet.ur[uiid]
    kNeighbors = heapq.nlargest(k, userRatings, key=lambda t: t[1])
    
    candidates = defaultdict(float)
    for itemID, rating in kNeighbors:
        similarityRow = simsMatrix[itemID]
        for innerID, score in enumerate(similarityRow):
            candidates[innerID] += score * (rating / 5.0)
        
    # Build a dictionary of stuff the user has already seen
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k-nearest-
neighbors (knn) 
recommenders



sundog-education.com 142

another way to do it

rating 
predictions

candidate 
generation

candidate 
ranking

filtering
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user-based KNN

for user u and item i…

find the k most-
similar users who 

rated this item

compute mean sim 
score weighted by 

ratings

rating prediction
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user-based knn

𝑟̂𝑟𝑢𝑢𝑢𝑢 =
∑𝑣𝑣∈𝑁𝑁𝑖𝑖𝑘𝑘(𝑢𝑢) 𝑠𝑠𝑠𝑠𝑠𝑠(𝑢𝑢, 𝑣𝑣) � 𝑟𝑟𝑣𝑣𝑣𝑣
∑
𝑣𝑣∈𝑁𝑁𝑖𝑖

𝑘𝑘(𝑢𝑢) 𝑠𝑠𝑠𝑠𝑠𝑠(𝑢𝑢, 𝑣𝑣) 
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item-based KNN

for user u and item i…

find the k most-
similar items also 
rated by this user

compute mean sim 
score weighted by 

ratings

rating prediction
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user-based knn

𝑟̂𝑟𝑢𝑢𝑢𝑢 =
∑𝑗𝑗∈𝑁𝑁𝑢𝑢𝑘𝑘(𝑖𝑖) 𝑠𝑠𝑠𝑠𝑠𝑠(𝑖𝑖, 𝑗𝑗) � 𝑟𝑟𝑢𝑢𝑢𝑢
∑𝑗𝑗∈𝑁𝑁𝑢𝑢𝑘𝑘(𝑗𝑗) 𝑠𝑠𝑠𝑠𝑠𝑠(𝑖𝑖, 𝑗𝑗) 
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code walkthrough
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exercise

try out different similarity metrics: cosine, msd, and pearson.
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exercise results: 
user-based

cosine
RMSE: 0.9961

One Magic Christmas (1985)
Step Into Liquid (2002)
Art of War, The (2000)
Taste of Cherry (1997)
King Is Alive, The (2000) 
Innocence (2000) 
Maelstrom (2000) 
Faust (1926) 
Seconds (1966) 
Amazing Grace (2006) 

pearson
RMSE: 1.0016

Othello (1995) 
Step Into Liquid (2002) 
Dreamscape (1984) 
Taste of Cherry (1997) 
King Is Alive, The (2000) 
Innocence (2000) 
Maelstrom (2000) 
Last Seduction, The (1994)
Amazing Grace (2006)
Unvanquished, The (1957)

msd
RMSE: 0.9713

One Magic Christmas (1985) 
Step Into Liquid (2002) 
Art of War, The (2000) 
Taste of Cherry (1997) 
King Is Alive, The (2000) 
Innocence (2000) 
Maelstrom (2000) 
Faust (1926) 
Seconds (1966) 
Amazing Grace (2006) 
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exercise results:
item-based

cosine
RMSE: 0.9995

Life in a Day (2011)
Under Suspicion (2000)
Asterix and the Gauls (1967)
Find Me Guilty (2006) 
Elementary Particles, The (2006) 
Asterix and the Vikings (2006) 
From the Sky Down (2011) 
Vive L'Amour (1994) 
Vagabond (1985) 
Ariel (1988) 

pearson
RMSE: 0.9928

Hearts and Minds (1996) 
Pokemon the Movie 2000 (2000) 
Eureka (2000) 
Silent Running (1972) 
It Might Get Loud (2008) 
Dinner Rush (2000) 
Brainstorm (1983) 
Europa (Zentropa) (1991) 
Gerry (2002) 
Soul Kitchen (2009) 

msd
RMSE: 0.9424

Life in a Day (2011) 
Under Suspicion (2000) 
Asterix and the Gauls (1967) 
Find Me Guilty (2006) 
Elementary Particles (2006) 
Asterix and the Vikings (2006) 
From the Sky Down (2011) 
Vive L'Amour (1994) 
Vagabond (1985) 
Ariel (1988) 
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more experiments

KNNWithZScore
RMSE: 0.9347 

One Magic Christmas (1985)
Taste of Cherry (1997)
King Is Alive, The (2000)
Innocence (2000)
MaelstrÃ¶m (2000)
Amazing Grace (2006)
Unvanquished, The (1957)
Undertow (2004)
Big Town, The (1987)
Masquerade (1988)

KNNBaseline
RMSE: 0.9129

Digimon: The Movie (2000) 
Pokemon 3: The Movie (2001) 
City of Industry (1997) Amityville 
Curse, The (1990) 
Grand, The (2007) 
Tracey Fragments, The (2007) 
T-Rex: Back to the Cretaceous (1998) 
Above the Law (1988) 
Enforcer, The (1976) 
Kirikou and the Sorceress (1998)

KNNWithMeans
RMSE: 0.9306

One Magic Christmas (1985) 
Taste of Cherry (1997) 
King Is Alive, The (2000) 
Innocence (2000) 
Maelstrom (2000) 
Amazing Grace (2006) 
Unvanquished, The (1957) 
Undertow (2004) 
Soul Kitchen (2009) 
Big Town, The (1987) 
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why is knn so bad?
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bleeding edge alert!
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translation-based 
recommendations
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translation-based 
recommendations

https://sites.google.com/view/ruining-he/

https://sites.google.com/view/ruining-he/
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translation-based 
recommendations
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translation-based 
recommendations
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model-based 
methods
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matrix 
factorization
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the problem

Indiana Jones Star Wars Empire Strikes Back Incredibles Casablanca
Bob 4 5 ? ? ?
Ted ? ? ? ? 1
Ann ? 5 5 5 ?
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principal component 
analysis
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eigenvectors are 
principal components
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pca on movie 
ratings

Indiana Jones Star Wars Empire Strikes Back Incredibles Casablanca
Bob 4 5 5 4 4
Ted 3 3 3 5 4
Ann 4 5 5 5 2

"Action" "Sci-Fi" "Classic"
Bob 0.3 0.5 0.2
Ted 0.1 0.1 0.8
Ann 0.3 0.6 0.1

P
C
A

𝑈𝑈

𝑅𝑅
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pca on movie 
ratings

Bob Ted Ann
Indiana Jones 4 3 4
Star Wars 5 3 5
Empire Strikes Back 5 3 5
Incredibles 4 5 5
Casablanca 4 4 2

P
C
A

"Action" "Sci-Fi" "Classic"
Indiana Jones 0.6 0.3 0.1
Star Wars 0.4 0.6 0
Empire Strikes Back 0.4 0.6 0
Incredibles 0.8 0.2 0
Casablanca 0.2 0 0.8

𝑅𝑅𝑇𝑇

𝑀𝑀
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matrix factorization

𝑅𝑅 = 𝑈𝑈Σ𝑀𝑀𝑇𝑇

singular value decomposition (svd)
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but wait

Indiana Jones Star Wars Empire Strikes Back Incredibles Casablanca
Bob 4 5 ? ? ?
Ted ? ? ? ? 1
Ann ? 5 5 5 ?

𝑅𝑅 = 𝑈𝑈Σ𝑀𝑀𝑇𝑇

𝑅𝑅𝐵𝐵𝐵𝐵𝐵𝐵,𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 =  𝑈𝑈𝐵𝐵𝐵𝐵𝐵𝐵 � 𝑀𝑀𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵
𝑇𝑇

stochastic gradient descent (sgd)
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enough talk
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code walkthrough
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a matrix factorization bestiary

Non-Negative Matrix Factorization (NMF)

Probabilistic Matrix Factorization (PMF)

Probabilistic Latent Semantic Analysis (PLSA)

PureSVD

UV Decomposition

Weighted Regularized Matrix Factorization (WRMF)

SVD++

timeSVD++

HOSVD

CUR

Factorization Machines

Factorized Personalized Markov Chains
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tuning svd

print("Searching for best parameters...")
param_grid = {'n_epochs': [20, 30], 'lr_all': [0.005, 0.010],
              'n_factors': [50, 100]}
gs = GridSearchCV(SVD, param_grid, measures=['rmse', 'mae'], cv=3)

gs.fit(evaluationData)

# best RMSE score
print("Best RMSE score attained: ", gs.best_score['rmse'])

params = gs.best_params['rmse']
SVDtuned = SVD(n_epochs = params['n_epochs'], lr_all = params['lr_all'], n_factors 
= params['n_factors'])
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exercise

tune the hyperparameters for SVD with the MovieLens data set.
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svd tuning results
{'n_epochs': 20, 'lr_all': 0.005, 'n_factors': 50}

Untuned
RMSE: 0.9033 

Sixth Sense, The (1999) 
Casablanca (1942) 
Hamlet (1996) 
Monty Python and the Holy Grail (1975) 
When We Were Kings (1996) 
It Happened One Night (1934) 
Bridge on the River Kwai, The (1957) 
Smoke (1995) 
Big Night (1996) 
Seven Samurai (1954)

Tuned
RMSE: 0.9002

Lord of the Rings: The Return of the King, The (2003) 
Modern Times (1936) 
Lord of the Rings: The Two Towers, The (2002) 
Lord of the Rings: The Fellowship of the Ring, The (2001) 
Sunset Blvd. (a.k.a. Sunset Boulevard) (1950) 
Lawrence of Arabia (1962) 
Departed, The (2006) 
Raging Bull (1980) 
Matrix, The (1999) 
Singin' in the Rain (1952)
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bleeding edge alert!
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sparse linear 
methods (SLIM)
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SLIM results
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how SLIM works

�𝑎𝑎𝑖𝑖𝑖𝑖 = 𝑎𝑎𝑖𝑖𝑇𝑇𝑤𝑤𝑗𝑗

𝐴̃𝐴 = 𝐴𝐴𝐴𝐴
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recommendations 
with deep learning
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intro to deep 
learning
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deep learning pre-
requisites
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gradient descent
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autodiff

• Gradient descent requires knowledge of, well, the gradient from 
your cost function (MSE)

• Mathematically we need the first partial derivatives of all the inputs
• This is hard and inefficient if you just throw calculus at the problem

• Reverse-mode autodiff to the rescue!
• Optimized for many inputs + few outputs (like a neuron)
• Computes all partial derivatives in # of outputs + 1 graph traversals
• Still fundamentally a calculus trick – it’s complicated but it works
• This is what Tensorflow uses
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softmax

• Used for classification
• Given a score for each class
• It produces a probability of each class
• The class with the highest probability is the “answer” you get

x is a vector of input values
theta is a vector of weights
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in review

• Gradient descent is an algorithm for minimizing error over multiple 
steps

• Autodiff is a calculus trick for finding the gradients in gradient 
descent

• Softmax is a function for choosing the most probable 
classification given several input values
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introducing 
artificial neural 

networks
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the biological 
inspiration

• Neurons in your cerebral cortex are 
connected via axons

• A neuron “fires” to the neurons it’s 
connected to, when enough of its 
input signals are activated.

• Very simple at the individual neuron 
level – but layers of neurons 
connected in this way can yield 
learning behavior.

• Billions of neurons, each with 
thousands of connections, yields a 
mind
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cortical columns

• Neurons in your cortex seem to be 
arranged into many stacks, or 
“columns” that process information in 
parallel

• “mini-columns” of around 100 neurons 
are organized into larger “hyper-
columns”. There are 100 million mini-
columns in your cortex

• This is coincidentally similar to how 
GPU’s work…

(credit: Marcel Oberlaender et al.)
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the first artificial 
neurons
• 1943!!

A B

C An artificial neuron “fires” if more than N 
input connections are active.

Depending on the number of connections 
from each input neuron, and whether a 
connection activates or suppresses a 
neuron, you can construct AND, OR, and 
NOT logical constructs this way.

This example would implement C = A OR B if the threshold is 2 inputs being active.
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the linear threshold 
unit (ltu)

• 1957!
• Adds weights to the 

inputs; output is given by 
a step function

Weight 
1

Weight 
2

Σ

Input 1 Input 2

Sum up the products of 
the inputs and their 
weights
Output 1 if sum is >= 0
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the perceptron

• A layer of LTU’s
• A perceptron can learn by 

reinforcing weights that lead 
to correct behavior during 
training

• This too has a biological 
basis (“cells that fire 
together, wire together”)

Σ ΣΣ

Weight 
1

Weight 
2

Bias 
Neuron 

(1.0)

Input 1 Input 2
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multi-layer 
perceptrons

• Addition of “hidden 
layers”

• This is a Deep Neural 
Network

• Training them is trickier –
but we’ll talk about that.

Σ ΣΣ

Weight 
1

Weight 
2

Bias 
Neuron 

(1.0)

Input 1 Input 2

Σ

Σ ΣΣ
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a modern deep 
neural network

• Replace step activation 
function with 
something better

• Apply softmax to the 
output

• Training using gradient 
descent

Σ ΣΣ

Weight 
1

Weight 
2

Bias 
Neuron 

(1.0)

Input 1 Input 2

Σ

Σ ΣΣ

softmax

Bias 
Neuron 

(1.0)
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let’s play
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deep learning
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backpropagation

• How do you train a MLP’s weights? How does it 
learn?

• Backpropagation… or more specifically:
Gradient Descent using reverse-mode autodiff!

• For each training step:
• Compute the output error
• Compute how much each neuron in the previous 

hidden layer contributed
• Back-propagate that error in a reverse pass
• Tweak weights to reduce the error using gradient 

descent
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activation functions 
(aka rectifier)

• Step functions don’t work with gradient 
descent – there is no gradient!

• Mathematically, they have no useful 
derivative.

• Alternatives: 
• Logistic function
• Hyperbolic tangent function
• Exponential linear unit (ELU)
• ReLU function (Rectified Linear Unit)

• ReLU is common. Fast to compute and 
works well.

• Also: “Leaky ReLU”, “Noisy ReLU”
• ELU can sometimes lead to faster learning 

though. ReLU function
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optimization 
functions

• There are faster (as in faster learning) optimizers than gradient descent
• Momentum Optimization

• Introduces a momentum term to the descent, so it slows down as things start to flatten and speeds up 
as the slope is steep

• Nesterov Accelerated Gradient
• A small tweak on momentum optimization – computes momentum based on the gradient slightly 

ahead of you, not where you are
• RMSProp

• Adaptive learning rate to help point toward the minimum
• Adam

• Adaptive moment estimation – momentum + RMSProp combined
• Popular choice today, easy to use
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avoiding overfitting

• With thousands of weights to tune, overfitting is a 
problem

• Early stopping (when performance starts dropping)
• Regularization terms added to cost function during 

training
• Dropout – ignore say 50% of all neurons randomly 

at each training step
• Works surprisingly well!
• Forces your model to spread out its learning
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tuning your 
topology

• Trial & error is one way
• Evaluate a smaller network with less neurons 

in the hidden layers
• Evaluate a larger network with more layers

• Try reducing the size of each layer as you progress 
– form a funnel

• More layers can yield faster learning
• Or just use more layers and neurons than 

you need, and don’t care because you use 
early stopping.

• Use “model zoos”
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activation 
functions
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activation functions

• Define the output of a node / neuron given its input signals

f(x)

Σ



sundog-education.com 201

linear activation 
function

• It doesn’t really *do* 
anything

• Can’t do backpropagation

By Laughsinthestocks - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=44920411
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binary step function

• It’s on or off
• Can’t handle multiple 

classification – it’s 
binary after all

• Vertical slopes don’t 
work well with calculus!

By Laughsinthestocks - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=44920435
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instead we need non-linear 
activation functions

• These can create complex mappings between inputs and 
outputs

• Allow backpropagation (because they have a useful derivative)
• Allow for multiple layers (linear functions degenerate to a single 

layer)
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Sigmoid / Logistic / 
TanH

• Nice & smooth
• Scales everything from 0-1 

(Sigmoid / Logistic) or -1 to 1 
(tanh / hyperbolic tangent)

• But: changes slowly for high 
or low values

• The “Vanishing Gradient” 
problem

• Computationally expensive
• Tanh generally preferred over 

sigmoid

By Laughsinthestocks - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=44920533

Sigmoid AKA Logistic

TanH AKA Hyperbolic Tangent
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Rectified Linear 
Unit (ReLU)

• Now we’re talking
• Very popular choice
• Easy & fast to 

compute
• But, when inputs are 

zero or negative, we 
have a linear function 
and all of its 
problems

• The “Dying ReLU 
problem” By Laughsinthestocks - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=44920600
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Leaky ReLU

• Solves “dying ReLU” by 
introducing a negative 
slope below 0 (usually not 
as steep as this)
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Parametric ReLU 
(PReLU)

• ReLU, but the slope in the 
negative part is learned 
via backpropagation

• Complicated and YMMV
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Other ReLU variants

• Exponential Linear Unit (ELU)
• Swish

• From Google, performs really well
• Mostly a benefit with very deep 

networks (40+ layers)
• Maxout

• Outputs the max of the inputs
• Technically ReLU is a special 

case of maxout
• But doubles parameters that 

need to be trained, not often 
practical.

By Ringdongling - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=85402414
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Softmax

• Used on the final output layer of a 
multiple classification problem

• Basically converts outputs to 
probabilities of each classification

• Can’t produce more than one label for 
something (sigmoid can)

• Don’t worry about the actual function 
for the exam, just know what it’s used 
for.

Σ ΣΣ

softmax
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Choosing an 
activation function

• For multiple classification, use softmax on the output layer
• RNN’s do well with Tanh
• For everything else

• Start with ReLU
• If you need to do better, try Leaky ReLU
• Last resort: PReLU, Maxout
• Swish for really deep networks
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tensorflow
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why tensorflow?

• It’s not specifically for neural networks– it’s more generally an 
architecture for executing a graph of numerical operations

• Tensorflow can optimize the processing of that graph, and 
distribute its processing across a network

• Sounds a lot like Apache Spark, eh?
• It can also distribute work across GPU’s!

• Can handle massive scale – it was made by Google
• Runs on about anything
• Highly efficient C++ code with easy to use Python API’s
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tensorflow basics

• Install with conda install 
tensorflow or conda install 
tensorflow-gpu

• A tensor is just a fancy name for 
an array or matrix of values

• To use Tensorflow, you:
• Construct a graph to compute your 

tensors
• Initialize your variables
• Execute that graph – nothing 

actually happens until then

import tensorflow as tf

a = tf.Variable(1, name="a")
b = tf.Variable(2, name="b")
f = a + b

tf.print(f)

World’s simplest Tensorflow app:
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creating a neural network 
with tensorflow

• Mathematical insights:
• All those interconnected arrows multiplying 

weights can be thought of as a big matrix 
multiplication

• The bias term can just be added onto the 
result of that matrix multiplication

• So in Tensorflow, we can define a layer 
of a neural network as:
output = 
tf.matmul(previous_layer, 
layer_weights) + layer_biases

• By using Tensorflow directly we’re kinda 
doing this the “hard way.”

Σ ΣΣ

Weight 
1

Weight 
2

Bias 
Neuron 
(1.0)

Input 1 Input 2

Σ

Σ ΣΣ

softmax

Bias 
Neur

on 
(1.0)



sundog-education.com 215

creating a neural network 
with tensorflow
• Load up our training and testing data
• Construct a graph describing our neural network

• Use placeholders for the input data and target labels
• This way we can use the same graph for training and testing!

• Use variables for the learned weights for each connection 
and learned biases for each neuron

• Variables are preserved across runs within a Tensorflow 
session

• Associate an optimizer (ie gradient descent) to the 
network

• Run the optimizer with your training data
• Evaluate your trained network with your testing 

data
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make sure your features 
are normalized

• Neural networks usually work best if your input data is normalized.
• That is, 0 mean and unit variance
• The real goal is that every input feature is comparable in terms of 

magnitude
• scikit_learn’s StandardScaler can do this for you
• Many data sets are normalized to begin with – such as the one 

we’re about to use.
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let’s try it out
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keras
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why keras?

• Easy and fast prototyping
• Runs on top of TensorFlow (or 

CNTK, or Theano)
• scikit_learn integration
• Less to think about – which often 

yields better results without even 
trying

• This is really important! The 
faster you can experiment, the 
better your results.
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let’s dive in
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example: multi-class 
classification

• MNIST is an example of multi-class classification.

model = Sequential()

model.add(Dense(64, activation='relu', input_dim=20)) 
model.add(Dropout(0.5)) 
model.add(Dense(64, activation='relu')) 
model.add(Dropout(0.5)) 
model.add(Dense(10, activation='softmax')) 
sgd = SGD(lr=0.01, decay=1e-6, momentum=0.9, 

nesterov=True) 
model.compile(loss='categorical_crossentropy', 

optimizer=sgd, metrics=['accuracy'])
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example: binary 
classification

model = Sequential() 
model.add(Dense(64, input_dim=20, 
activation='relu')) model.add(Dropout(0.5)) 
model.add(Dense(64, activation='relu')) 
model.add(Dropout(0.5)) 
model.add(Dense(1, activation='sigmoid')) 
model.compile(loss='binary_crossentropy', 
optimizer='rmsprop', metrics=['accuracy'])
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integrating keras 
with scikit-learn

from keras.wrappers.scikit_learn import KerasClassifier

def create_model():
    model = Sequential()
    model.add(Dense(6, input_dim=4, kernel_initializer='normal', activation='relu'))
    model.add(Dense(4, kernel_initializer='normal', activation='relu'))
    model.add(Dense(1, kernel_initializer='normal', activation='sigmoid'))
    model.compile(loss='binary_crossentropy', optimizer='rmsprop', metrics=['accuracy'])
    return model

estimator = KerasClassifier(build_fn=create_model, nb_epoch=100, verbose=0)

cv_scores = cross_val_score(estimator, features, labels, cv=10)
print(cv_scores.mean())
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let’s try it out
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convolutional 
neural networks
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cnn’s: what are they 
for?

• When you have data that doesn’t neatly 
align into columns

• Images that you want to find features within
• Machine translation
• Sentence classification
• Sentiment analysis

• They can find features that aren’t in a 
specific spot

• Like a stop sign in a picture
• Or words within a sentence

• They are “feature-location invariant”
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cnn’s: how do they 
work?

• Inspired by the biology of the visual cortex
• Local receptive fields are groups of neurons that only respond to a part of 

what your eyes see (subsampling)
• They overlap each other to cover the entire visual field (convolutions)
• They feed into higher layers that identify increasingly complex images

• Some receptive fields identify horizontal lines, lines at different angles, etc. (filters)
• These would feed into a layer that identifies shapes
• Which might feed into a layer that identifies objects

• For color images, extra layers for red, green, and blue
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how do we “know” 
that’s a stop sign?

• Individual local receptive fields scan the 
image looking for edges, and pick up the 
edges of the stop sign in a layer

• Those edges in turn get picked up by a higher 
level convolution that identifies the stop 
sign’s shape (and letters, too)

• This shape then gets matched against your 
pattern of what a stop sign looks like, also 
using the strong red signal coming from your 
red layers

• That information keeps getting processed 
upward until your foot hits the brake!

• A CNN works the same way
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cnn’s with keras

• Source data must be of appropriate dimensions
• ie width x length x color channels

• Conv2D layer type does the actual convolution on a 2D image
• Conv1D and Conv3D also available – doesn’t have to be image data

• MaxPooling2D layers can be used to reduce a 2D layer down by taking 
the maximum value in a given block

• Flatten layers will convert the 2D layer to a 1D layer for passing into a 
flat hidden layer of neurons

• Typical usage: 
• Conv2D -> MaxPooling2D -> Dropout -> Flatten -> Dense -> Dropout -> Softmax
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cnn’s are hard

• Very resource-intensive (CPU, GPU, and 
RAM)

• Lots of hyperparameters
• Kernel sizes, many layers with different 

numbers of units, amount of pooling… in 
addition to the usual stuff like number of 
layers, choice of optimizer

• Getting the training data is often the 
hardest part! (As well as storing and 
accessing it)
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specialized cnn 
architectures

• Defines specific arrangement of layers, padding, and hyperparameters
• LeNet-5

• Good for handwriting recognition

• AlexNet
• Image classification, deeper than LeNet

• GoogLeNet
• Even deeper, but with better performance
• Introduces inception modules (groups of convolution layers)

• ResNet (Residual Network)
• Even deeper – maintains performance via skip connections.
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let’s try it out
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recurrent neural 
networks



sundog-education.com 234

rnn’s: what are they 
for?

• Time-series data
• When you want to predict future behavior based 

on past behavior
• Web logs, sensor logs, stock trades
• Where to drive your self-driving car based on 

past trajectories
• Data that consists of sequences of arbitrary 

length
• Machine translation
• Image captions
• Machine-generated music
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a recurrent neuron

Σ
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another way to look 
at it

Σ Σ Σ

Time

A “Memory Cell”
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a layer of recurrent 
neurons

Σ Σ Σ Σ
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rnn topologies

• Sequence to sequence
• i.e., predict stock prices based on 

series of historical data
• Sequence to vector

• i.e., words in a sentence to 
sentiment

• Vector to sequence
• i.e., create captions from an image

• Encoder -> Decoder
• Sequence -> vector -> sequence
• i.e., machine translation
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training rnn’s

• Backpropagation through time
• Just like backpropagation on MLP’s, but applied to each time step.

• All those time steps add up fast
• Ends up looking like a really, really deep neural network.
• Can limit backpropagation to a limited number of time steps (truncated 

backpropagation through time)
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training rnn’s

• State from earlier time steps get diluted 
over time

• This can be a problem, for example when 
learning sentence structures

• LSTM Cell
• Long Short-Term Memory Cell
• Maintains separate short-term and long-term 

states
• GRU Cell

• Gated Recurrent Unit
• Simplified LSTM Cell that performs about as 

well
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training rnn’s

• It’s really hard
• Very sensitive to topologies, choice 

of hyperparameters
• Very resource intensive
• A wrong choice can lead to a RNN 

that doesn’t converge at all.
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let’s run an example
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tuning neural 
networks



sundog-education.com 244

Learning Rate

• Neural networks are trained 
by gradient descent (or 
similar means)

• We start at some random 
point, and sample different 
solutions (weights) seeking 
to minimize some cost 
function, over many epochs

• How far apart these samples 
are is the learning rate
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Effect of learning 
rate

• Too high a learning rate 
means you might overshoot 
the optimal solution!

• Too small a learning rate will 
take too long to find the 
optimal solution

• Learning rate is an example 
of a hyperparameter
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Batch Size

• How many training samples are 
used within each epoch

• Somewhat counter-intuitively:
• Smaller batch sizes can work their 

way out of “local minima” more 
easily

• Batch sizes that are too large can 
end up getting stuck in the wrong 
solution

• Random shuffling at each epoch 
can make this look like very 
inconsistent results from run to 
run
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To Recap

• Small batch sizes tend to not get stuck in local minima
• Large batch sizes can converge on the wrong solution at 

random
• Large learning rates can overshoot the correct solution
• Small learning rates increase training time
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neural network 
regularization
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what is 
regularization?

• Preventing overfitting
• Models that are good at making 

predictions on the data they were trained 
on, but not on new data it hasn’t seen 
before

• Overfitted models have learned patterns 
in the training data that don’t generalize to 
the real world

• Often seen as high accuracy on training 
data set, but lower accuracy on test or 
evaluation data set.

• When training and evaluating a model, we 
use training, evaluation, and testing data 
sets.

• Regularization techniques are 
intended to prevent overfitting.

Chabacano [CC BY-SA 4.0 (https://creativecommons.org/licenses/by-sa/4.0)]
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Too many layers? 
Too many neurons?

Σ ΣΣ

Weight 
1

Weight 
2

Bias 
Neuro
n (1.0)

Input 1 Input 2

Σ

Σ ΣΣ

softmax

Bias 
Neuro
n (1.0)
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Σ ΣΣ

Weight 
1

Weight 
2

Bias 
Neuro
n (1.0)

Input 1 Input 2

Σ

Σ ΣΣ

softmax

Bias 
Neuro
n (1.0)

Dropout

XX
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Early Stopping
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wrapping up
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recommendations 
with deep learning
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is deep learning 
overkill?
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restricted 
boltzmann 

machines (rbm)
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rbm’s: the paper
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what is a rbm

Σ + 𝑏𝑏1

Σ + 𝑏𝑏2

Σ + 𝑏𝑏3

visible hidden

𝑤𝑤1
𝑤𝑤2

𝑤𝑤𝑛𝑛…

𝑥𝑥1

𝑥𝑥2

𝑥𝑥3

𝑥𝑥4
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rbm backward pass

𝑏𝑏1

𝑏𝑏2

𝑏𝑏3

𝑏𝑏4

visible hidden

𝑤𝑤1
𝑤𝑤2

𝑤𝑤𝑛𝑛…
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rbm’s for 
recommender systems

0 0 0 0 1

visible (item ratings for 
a given user)

hidden

contrastive 
divergence

gibbs 
sampler

0 0 1 0 0
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code walkthrough
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code walkthrough
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code walkthrough
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exercise

Find the best set of hyperparameters for the rbm algorithm.
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code walkthrough
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Generative 
Adversarial 
Networks
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Generative 
Adversarial 
Networks

• Yes, it’s the tech behind 
“deepfakes” and all those viral 
face-swapping and aging apps

• But researchers had nobler 
intentions…

• Generating synthetic datasets to 
remove private info

• Anomaly detection
• Self-driving
• Art, music

Datasciencearabic1, CC BY-SA 4.0 
<https://creativecommons.org/licenses/by-sa/4.0>, via Wikimedia 
Commons

This person doesn’t exist.
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GAN’s

• Learns the actual distribution of latent vectors
• Doesn’t assume Gaussian normal distributions 

like VAE’s

• The generator maps random noise(!) to a 
probability distribution

• The discriminator learns to identify real 
images from generated (fake) images

• The generator is trying to fool the 
discriminator into thinking its images are real

• The discriminator is trying to catch the 
generator

• The generator and discriminator are 
adversarial, hence the name…

• Once the discriminator can’t tell the difference 
anymore, we’re done (in theory)
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transpose 
convolution

• The generator may use Conv2DTranspose layers 
to reconstruct images from random input

• It learns weights used to create new image 
pixels from lower-dimensional representations

• Well, it can be used on more than just 
images

• Stride of 2 is often used
• Can use max-unpooling (inverse of max-pooling)
• Think of the decoder as a CNN that works 

backwards.
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fancy math

• That’s the adversarial loss function.
• We call it a “min-max game”

• The generator is minimizing its loss in creating realistic images
• The discriminator, at the same time, is maximizing its ability to 

detect fakes
• It is complicated and delicate.

• Training is very unstable; lots of trial & error / hyperparameter tuning
• Mode collapse
• Vanishing gradients
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code walkthrough
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deep neural 
networks for 

recommendations
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autoencoders for 
recommendations (“autorec”)

𝑅𝑅1𝑖𝑖 𝑅𝑅2𝑖𝑖 𝑅𝑅3𝑖𝑖 𝑅𝑅𝑚𝑚𝑚𝑚…

𝑅𝑅1𝑖𝑖 𝑅𝑅2𝑖𝑖 𝑅𝑅3𝑖𝑖 𝑅𝑅𝑚𝑚𝑚𝑚…

+1

+1
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deeper networks 
with keras

Credit: 
https://nipunbatra.github.io/blog/2017
/recommend-keras.html
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code walkthrough
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session-based 
recommendations 

with rnn’s
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e-commerce 
clickstream


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video views
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the paper
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GRU4Rec (gated 
recurrent unit)

Image: Jeblad / CC BY-SA 4.0
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GRU4Rec

input layer (one-hot encoded item)

embedding layer

gru layers

feedforward layers

output scores on items
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GRU4Rec

• session-parallel mini-batches
• sampling the output
• ranking loss
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is it overly complex?
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exercise

https://bit.ly/2zsr6Lh

convert to python 3 (xrange/range, sort/sort_values)

import pandas and scikit-learn

adapt to the new data set format

create a train/test split

always run with a fresh kernel
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my solution

http://tinyurl.com/y9ducpag
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code walkthrough
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bleeding edge alert!
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GAN’s for 
recommenders
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GAN’s with a twist

ratings

ratings

GRU / RNN  
/ other…

Older ratings

GRU / RNN  
/ other…
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the paper (well, one 
of many really)

https://homangab.github.io/papers/recgan.pdf
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TensorFlow 
Recommenders 

(TFRS)
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TensorFlow 
Recommenders

• From Google!
• Built on top of Keras
• Easy to use, but highly flexible
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TFRS: retrieval

A retrieval stage selects recommendation 
candidates

A ranking stage selects the best candidates and 
ranks them

The retrieval model embeds user ID’s and movie 
ID’s of rated movies into embedding layers of the 
same dimension
• Each ID is mapped to a vector of N 

dimensions
• Position in this N-dimensional space 

represents similarity!

The two are multiplied to create query-candidate 
affinity scores for each rating during training

If the affinity score for the rating is higher than 
other for other candidates, our model is good

Top-K recs via “brute force” sorting all candidates

retrieval: the two towers

Query model Candidate model

Convert user ID’s to 
integers

Embedding layer

Convert movie ID’s to 
integers

Embedding layer

tfrs.Model(user, movie) pairs
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code walkthrough
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TFRS: ranking

As ranking uses a subset of candidates generated by retrieval, you can do fancier stuff.

For example, actually try to predict ratings using multiple stacked dense layers.

User AND movie 
embeddings

256 Dense layer

64 Dense layer

1 layer (final prediction)
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code walkthrough
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TFRS: side features

You can augment ratings data with content-based 
data, or any other features really
• Data should add context
• Helps cold-start

Just add them into the query or candidate towers as 
additional embeddings

Preprocessing is up to you
• Categorical data should turn into embeddings
• Continuous features should be normalized (ie 

timestamps)
• Standardization
• Discretization
• Vectorizing text

Query “tower”

Convert user ID’s to 
integers

Embedding layer

Normalize and/or 
discretize timestamps

Embedding layer

Concatenated Embedding Layer
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TFRS: deep 
retrieval models

Query “tower”

Convert user ID’s to 
integers

Embedding layer

Normalize and/or 
discretize timestamps

Embedding layer

Concatenated Embedding Layer

64 Dense layer

32 Dense layer
…can do similar stuff on the candidate tower
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TFRS: multi-task 
recommenders

Combine different kinds of user behavior
• Page views
• Image Clicks
• Cart adds
• Purchases
• Reviews
• Returns
• Ratings

A joint model may perform better than multiple task-
specific models

Multiple objectives & loss functions

Use transfer learning to learn representations from a task 
with more data for a task with less
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TFRS: deep & cross 
networks

Feature crosses are hard

Recommendations where combined 
features provide additional context

If you bought fruit AND cookbooks, 
recommend a blender
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TFRS: deep & cross 
networks

Cross Networks explicitly apply feature crossing at each layer

• Combine with a Deep Network (MLP) to make a DCN
• Stacked, or in parallel
• tfrs.layers.dcn.Cross() makes it easy

Images: tensorflow.org
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TFRS: into 
production

Retrieval models are slow when evaluated with 
brute force
• Approximate Nearest Neighbor search (ANN)
• ScaNN package from Google does this
• tfrs.layers.factorized_top_k.ScaNN
• It is approximate! But way faster

Serving the results in production
• Export saved models to SavedModel format
• Serve the SavedModel via Tensorflow 

Serving
• See end of retrieval sample for an example
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code walkthrough
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bleeding edge alert!
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deep factorization 
machines
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the paper
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higher-order 
feature interactions

• app category
• time

• app category
• gender
• age



sundog-education.com 308

deepfm 
architecture
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an ensemble approach
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neural 
collaborative 

filtering
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neural collaborative 
filtering (ncf)

• Combines the strengths of matrix factorization and neural networks
• Matrix factorization has no non-linear steps, and can’t capture non-linear 

relationships
• …But neural networks do!
• So, feed users and items through a Generalized Matrix Factorization (GMF) and 

a Multi-Layer Perceptron (MLP) in parallel
• Feed their outputs into a NeuMF layer that concatenates them
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neural collaborative 
filtering
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introducing 
librecommender

• Like surpriselib, but with Tensorflow (or PyTorch, depending on the algorithm)
• Supports newer AI-based algorithms

• Transformers!
• GRU4Rec
• YouTube
• DeepFM
• Item or user-based CF
• ALS
• Neural Collaborative Filtering
• …and many more

• Hybrid recommenders with CF and content-based features
• Implicit or explicit data
• Includes both training (libreco) and serving (libserving) modules
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librecommender: 
simple example train_data, eval_data, test_data = random_split(data, multi_ratios=[0.8, 0.1, 0.1])

    train_data, data_info = DatasetPure.build_trainset(train_data)
    eval_data = DatasetPure.build_evalset(eval_data)
    test_data = DatasetPure.build_testset(test_data)
    print(data_info)  # n_users: 5894, n_items: 3253, data sparsity: 0.4172 %

    lightgcn = LightGCN(
        task="ranking",
        data_info=data_info,
        loss_type="bpr",
        embed_size=16,
        n_epochs=3,
        lr=1e-3,
        batch_size=2048,
        num_neg=1,
        device="cuda",
    )
    # monitor metrics on eval_data during training
    lightgcn.fit(
        train_data,
        neg_sampling=True,  # sample negative items for train and eval data
        verbose=2,
        eval_data=eval_data,
        metrics=["loss", "roc_auc", "precision", "recall", "ndcg"],
    )

    # predict preference of user 2211 to item 110
    print("prediction: ", lightgcn.predict(user=2211, item=110))
    # recommend 7 items for user 2211
    print("recommendation: ", lightgcn.recommend_user(user=2211, n_rec=7))



sundog-education.com 315

code walkthrough
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more technologies 
to watch
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word2vec

to boldly go where no one has

embedding layer

hidden layer

softmax

gone
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extending word2vec

embedding layer

hidden layer

softmax

song 5

song 1 song 2 song 3 song 4
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3D cnn’s for 
session-based recs

clicks (time)

categories
descriptions
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3D cnn’s for 
session-based recs
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the paper
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deep feature 
extraction with cnn’s

classical
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scaling it up
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apache spark
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installing spark 
(if you’re brave)

Install Java 8 SDK from Oracle to c:\jdk

Add JAVA_HOME environment variable to where you installed it
 Unix: export JAVA_HOME=/usr/lib/jvm/java-1.8.0-openjdk-amd64
 Windows: Use the system control panel, and set JAVA_HOME to c:\jdk

Windows only: 
 Create C:\winutils\bin and copy the winutils.exe file from the ScalingUp folder into it
 Set HADOOP_HOME environment variable to c:\winutils\
 Add %HADOOP_HOME%\bin to your PATH environment variable
 Restart your PC.

Install pyspark using Anaconda Navigator into your RecSys environment.
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spark in a nutshell
spark driver 

script

cluster 
manager

executor executor executor
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spark software 
architecture

Spark Streaming Spark SQL MLLib GraphX

SPARK CORE
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rdd’s

resilient

distributed

dataset
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evolution of the 
spark api

RDD DataFrame DataSet

jvm objects row objects internally rows, 
externally jvm objects
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code walkthrough
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code walkthrough
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amazon dsstne
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a sample config file
{
    "Version" : 0.7,
    "Name" : "AE",
    "Kind" : "FeedForward",  
    "SparsenessPenalty" : {
        "p" : 0.5,
        "beta" : 2.0
    },

    "ShuffleIndices" : false,

    "Denoising" : {
        "p" : 0.2
    },

    "ScaledMarginalCrossEntropy" : {
        "oneTarget" : 1.0,
        "zeroTarget" : 0.0,
        "oneScale" : 1.0,
        "zeroScale" : 1.0
    },
    "Layers" : [
        { "Name" : "Input", "Kind" : "Input", "N" : "auto", "DataSet" : "gl_input", "Sparse" : true },
        { "Name" : "Hidden", "Kind" : "Hidden", "Type" : "FullyConnected", "N" : 128, "Activation" : "Sigmoid", "Sparse" : true },
        { "Name" : "Output", "Kind" : "Output", "Type" : "FullyConnected", "DataSet" : "gl_output", "N" : "auto", "Activation" : "Sigmoid", "Sparse" : true }
    ],

    "ErrorFunction" : "ScaledMarginalCrossEntropy"
}
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code walkthrough
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scaling up dsstne
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learning more

https://amzn.to/2I69kAw
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amazon 
sagemaker
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sagemaker

build

train

deploy
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movielens + 
sagemaker

load ml-1m ratings

one-hot encode user 
& movie

build binary label 
vector

convert to protobuf & 
write to s3

train, deploy, predict
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code walkthrough
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other systems of 
note
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let’s be clear about 
surpriselib



sundog-education.com 343

amazon 
personalize

Amazon 
Personalize 

API

Amazon 
S3 Amazon Personalize 

(optimize models, 
train models, store & 

host model, cache 
model)

Personalization 
API (batch or 

real-time)

inventory, 
user data

behavior
data
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recombee

AI-powered recommendation engine

RESTful API / SDK (JavaScript, Python, Node.js, PHP. Java, etc.)

you send it activity data, it gives you recommendations.

3 tiers of pricing based on usage ($99/mo - $1499/mo)

var client = new recombee.ApiClient('database-id', dbPublicToken); // Send a view of item 'item_x' by user 'user_42' 

client.send( new recombee.AddDetailView('user_42', 'item_x')); // Get 5 recommended items for user 'user_42'. Recommend only items which haven't 
expired yet. 

client.send( new recombee.RecommendItemsToUser('user_42', 5, {filter: " 'expires' > now()"}), (err, resp) => { // Show recommendations } ); 
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predictionIO

apache, open-source machine learning server

not specifically for recommenders

simplifies deployment of web services to host trained 
models

similar in spirit to SageMaker

for recommendations, you’re limited to Apache Spark out 
of the box
 but you can add your own.
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richrelevance

the granddaddy of hosted, personalization-
as-a-service

lots of big-name clients

started by some ex-Amazon guys

“Xen AI” – not just a black box

“personalization cloud” – personalized 
recs, nav, content, search

pricing: if you have to ask…
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many, many more

Peerius – Strands – SLI Systems – ParallelDots – Azure ML – Gravity 
R&D – Dressipi – Sajari – IBM Watson – Segmentify – Mr. Dlib – 
Raccoon – Universal Recommender – HapiGER – Mahout – RecDB – 
Oryx – Crab – LightFM – Rexy  - QMF – Spotlight – tensorrec – hermes – 
CaseRecommender – ProbQA – Microsoft Recommenders – Gorse – 
Cornac - Devooght – LIBMF – RankSys – LibRec – Easyrec – Lenskit – 
Apache Giraph
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system 
architecture
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recommendations in the real 
world: pre-computed recs

user 
behavior 

data
recommender 

model

pre-
generated 

recs

rec 
service 
(fleet)

website / 
app

train

deploy
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recommendations in the real world: 
real-time collaborative filtering

user 
behavior 

data
item 

similarities job

pre-
generated 

sims

rec 
service 
(fleet)

website / 
app

train

deploy
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recommendations in the real 
world: deploy a trained model

user 
behavior 

data
recommender 

model

rec 
service 
(fleet)

website / 
app

train

deploy
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the cold-start 
problem
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cold-start: new user 
solutions

• use implicit data
• use cookies (carefully)
• geo-ip
• recommend top-sellers or promotions
• interview the user
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cold-start: new item 
solutions

• just don’t worry about it
• use content-based attributes
• map attributes to latent features (see LearnAROMA)
• random exploration
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exercise: random 
exploration
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code walkthrough



sundog-education.com 357

stoplists
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things you might 
stoplist

• adult-oriented content
• vulgarity
• legally prohibited topics (i.e. Mein Kampf)
• terrorism / political extremism
• bereavement / medical
• competing products
• drug use
• religion
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exercise: implement 
a stoplist
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code walkthrough



sundog-education.com 361

filter bubbles
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transparency and 
trust
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outliers
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exercise: filtering 
outliers
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code walkthrough
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gaming the system
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implicit data, 
explicit problems.
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international 
markets and laws
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dealing with time
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value-aware 
recommendations
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case studies
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youtube
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the paper
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youtube’s 
challenges

• scale
• freshness
• noise
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youtube’s (and google’s) 
answer to everything
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youtube’s candidate 
generation

……

average average

watch vector search vector geographic age gender …

video watches search tokens

ReLU

ReLU

ReLU

softmaxknn index
class 
probabilitiestop-N

video vectors

user vector
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learning to rank

impressions languages time elapsed prev. impress …

ReLU

ReLU

ReLU



sundog-education.com 378

learnings from 
youtube

• don’t train just on views
• withhold information
• dealing with series
• rank by consumption, not clicks
• learning-to-rank
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netflix
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netflix sources
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what model does 
netflix use?

all of them!
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everything is a 
recommendation
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whole-page 
optimization
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don’t predict 
ratings
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personalized 
ranking
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context-aware



sundog-education.com 387

hybrid approaches
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ensemble 
approaches
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combining behavior 
and semantic data
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exercise: build a 
hybrid 

recommender
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code walkthrough
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learning more
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current research:
acm sigkdd
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collaborative 
filtering
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going all-in
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