rrecommender
systems |

Copyright © 2018-2021 Sundog Software LLC, DBA Sundog Education
All rights reserved worldwide.
Stock images licensed via Getty Images / iStockPhoto.com

I@” sundog-education.com I 1

Education

recommender systems

3l 3l Q
O O O

install install download course
anaconda scikit-surprise materials

| let's do
this.

EEEEEEEEE

|

sundog-education.com/RecSys

EEEEEEEEE

rsetup walkthrough |

EEEEEEEEE

course overview

I Sundog-

getting started

intro to python

evaluating recommender systems
building a recommendation engine
content-based filtering
neighborhood-based collaborative filtering
model-based methods

intro to deep learning
recommendations with deep learning
scaling it up

challenges of recommender systems
case studies

hybrid solutions

more to explore

optional sections

I Sundog-

intro to python
intro to deep learning

[what is a
recommender system

EEEEEEEEE

|

what it is not

A recommender system is NOT a system that “recommends” arbitrary values.

That describes machine learning in general.

I Sundog-

for example

A system that “recommends” prices for a house you're
selling is NOT a recommender system.

A system that “recommends” whether a transaction is
fraudulent is NOT a recommender system.

These are general machine learning problems, where
you'd apply techniques such as

Regression, deep learning, XGBoost, or other
techniques.

If that's what you're looking for, you want a more
general machine learning course.

I Sundog- I 10

what it is

A system that predicts ratings or preferences a user might give to an item
Often these are sorted and presented as “top-N" recommendations

Also known as recommender engines, recommendation systems, recommendation platforms.

Sundog’ I 11

this is a recommender engine

Recommendations for you in Automotive

Sundog-

12

many flavors of
recommenders

I Sundog-

recommending
things

Recommendations for you in Automotive

T
Ll
—

recommending 1
content

10.

I Sundog-

!_'n

MOST EMAILED MOST WIEWED RECOMMENDED FOR YOU

9 articles viewed
recently All Recommendations

Four More People Die From Tainted

Romaine Lettuce

Addicted to Love

Royal Ladies, Roval Intrigue

A Protégé Behaves Badly. Should You
Remain His Mentor?

Here's Why British Firms Say Their Boards
Lack Women. Prepare to Cringe.

Move to Vermont. Work From Home. Get
$10,000. (Or at Least Something.)
Wealth Gap for Families

How Many People Can't Tolerate Statins?

Your Next Trip Might Change Your Life

Imagining the Unhappy Life of Stan Laurel

Go fo Your Recommendations =

What's This? | Dom't Show

recommending
music

Now Playing My Stations CL Create Station

> Shuffle

he Safety Dance (Extended ...

Y, < nd

e L

99 LUFTBALLONS

99 Luftballons
Nena - 99 Luftballons

Lyrics
Hast du etwas Zeit fiir mich
Dann singe ich ein Lied fiir dich

I Sundog-

recommending

Sundog-

17

recommending
search results

Go gle yuki hana L Q

All Maps Shopping Images Videos More Settings Tools

About 13,400,000 results (0.75 seconds)

Yuki Hana | Sushi & Japanese Fusion restaurant - Oviedo
sushiyukihana.com/ +

Premier sushi and Japanese fusion restaurant in Orlando, Florida. Conternporary cuisine with a fresh
twist on classic dishes in a relaxed atmosphere.

You've visited this page many times. Last visit: 12/22/17

Yuki Hana - Order Online - 560 Photos & 274 Reviews - Sushi Bars ... e e i e
https://www.yelp.com » Restaurants » Sushi Bars See photos T = See outside
Jkddok Rating: 4 - 274 reviews - Price range: $11-30
274 reviews of Yuki Hana "This is a gem of a sushi house. Every time | eat here it is always a great 1

experience . All the ingredients taste fresh and full of flavor. YUkl Hana

Website Directions Save
Yuki Hana Japanese Fusion Restaurant - Oviedo, FL | OpenTable
https://www.opentable.com » ... » Orlando » Winter Park + P
¥k Jd Rating: 4.5 - 140 reviews - Price range: $30 and under 5§ - Sushi Restaurant
Book now at Yuki Hana Japanese Fusion in Oviedo, FL. Explore menu, see photos and read 139 reviews
"I was expecting more since Yuki Hana is on Open __

4.3 % dk 123 Google reviews

Yuki Hana Japanese Fusion, Oviedo - Restaurant Reviews, Phone ... A contemporary eatery plus a sleek sushi bar serving classic Japanese
https://www.tripadvisor.com » ... » Central Florida » Oviedo » Oviedo Restaurants = fare with a creative twist
¥ *3 Rating: 4.5 - 55 reviews - Price range: §5 - $35

. X R . X . Address: 3635 Aloma Ave #1033, Oviedo, FL 32765
Reserve a table at Yuki Hana Japanese Fusion, Oviedo on TripAdvisor: See 55 unbiased reviews of Yuki

Hana Japanese Fusion, rated 4.5 of 5 on TripAdvisor . Hours: Closes soon: 3PM - Reopens 5PM ~
Menu: sushiyukihana.com
Yuki Hana Fusion Sushi - 1,388 Photos - 227 Reviews - Sushi ... Reservations: opentable.com, yelp.com
https://www.facebook.com ; Places » Oviedo, Florida » Sushi Restaurant « Order: postmates.com, grubhub.com, doordash.com
¥ H 3 Rating: 4.7 - 227 votes Phone: (407) 695-8808
Yuki Hana Fusion Sushi, Oviedo, FL. 3200 likes - 36 talking about this - 5743 were here. At Yuki Hana,
guests are served a menu that uses freshest Suggest an edit
Yuki Hana Japanese Fusion menu - Oviedo FL 32765 - (407) 553-8610 Know this place? Answer quick questions

https://www.allmenus.com » FL » Oviedo v
Restaurant menu, map for Yuki Hana Japanese Fusion located in 32765, Oviede FL, 3635 Aloma Ave,

Ste 1033. Diestions R answers

I Sundog-

understanding you

I Sundog-

mirror_mod.us:

mirror_mod.use_z = True

modifier_ob.select=1
bpy - context.scene.object:
print("Selected” + str(m

smirror_ob,select

mirror_mod.use_x -
mirror mod.use_y = Falsk

4 -

B %Y N\ e

19

understanding
you... explicitly

I Sundog-

understanding

you...

-\\ 7 You
6’ S
U o

things you things you things you
click on purchase consume

recommenders

Music View All & Manage ><

Page 1 of 20

polg
A T | by
T, /

THE BEATLES

= THE BEHTJ.'ES__

THE BEATLES

\ D_'Aul r:.pHA_T

n;:nnu'nm mnur

||I..f "J' T
=1]

e v e 1Y ST
la’nu rh v o lhl-l'll b,

Star Trek: Discovery (Original Solo: A Star Wars Story The Beatles: Help! [Blu-ray] A Hard Day's Night {Criterion Magical Mystery Tour [Blu-ray] Star Trek: Discov

Series Soundtrack) [Chapter 2] {Criginal Motion Picture John Lennon Collection) (Blu-ray + DVD) The Beatles Series Soundtrac

Jeff Russo Soundtrack) sirsirdrdryy 752 John Lennon drir ey 637 Jeff Russo

WA s EOwEN $22 49 vprime Y v e 455 §17.36 sprim Wil 7

$11.29 .,prime W W 17 $29.10 »prime $13.66 /prime
311.88 prime

Sundog’ 22

(one) anatomy of a
top-N recommender

I Sundog

Music View All & Manage

Star Trekc Discovery (Original

Soi
Series Soundirack) (Chapter 2] (Original Motion Picturs
)

51129 prime

THE BEATLES
-

THE BEATLES

Y

The Beaties: Helpl [Blu-ray]
et Aoy 768

52245 prime

52910 prime.

Magical Mystery Tour [Blu-ray]
Ay 57
$17.36 wprime

X

Page 10120

Star Trek Discov.
Saries Soundirac

51366 prime.

23

another way to do it

I Sundog

Music View Al & Manage

STHR TRER

Star Trek: Discovery (Original
Series Soundirack) [Chapter 2]
AR AT 1

$11.29 sprime

A Star Wars Story
(Original Motion Picture
Soundirac
AR ARy 17

$11.88 sprime

THE BEATLES

THE BEATLES

Y

The Beaties: Help! [Blu-ray]

AFA A 768
52249 prime.

A Hard Day's Night (Criterion
Collaction) (Biu-ray + DVD)
A ass

$29.10 prime.

Magical Mystery Tour [Blu-ray]
ey 57

$17.36 prime

X

Page 10120

Star Trakc Discov.
Saries Soundtrac

51366 prime.

24

| quiz time |

Education

which of the
following are
examples of
implicit ratings?

« star reviews
 purchase data

* video viewing data
 click data

| /Sundog

Education

which of the
following are
examples of
implicit ratings?

« star reviews
 purchase data

* video viewing data
 click data

I {““‘;\o\gm sundog-education.com

Education

which are examples of
recommender systems?

* netflix's home page

» google search

« amazon'’s “people who bought also bought..."
 pandora

- online radio stations

 youtube

 wikipedia search

which are examples of
recommender systems?

 netflix's home page

* google search

« amazon's “people who bought also bought..."
 pandora

* online radio stations

 youtube

 wikipedia search

ucation.com

« netflix recommendation widgets
« google search
« amazon “people who bought also bought”

which are examples of “Top-N"
recommenders?

| /Sundog

Education

» netflix recommendation widgets
« google search
« amazon “people who bought also bought”

which are examples of “Top-N"
recommenders?

I {““‘;\o\gm sundog-education.com

Education

 candidate generation
* filtering
- candidate shuffling
* ranking

which are components of
a top-N recommender?

I{un‘;:g” I 32

Education

 candidate generation
* filtering
- candidate shuffling
* ranking

which are components of
a top-N recommender?

I{un‘;:g” I 33

Education

—

EEEEEEEEE

intro to
python |

| code walkthrough |

EEEEEEEEE

[evaluating
recommender
systems]

EEEEEEEEE

train/test

P
<

I @m sundog-education.com

Education

measure
accuracy

k-fold cross-
validation

| /Sundog

Education

measuring
accuracy

I Sundog-

mean absolute

error (MAE)
n predicted rating actual rating error
: ‘ y . — X ‘ 5 3 2
1=1 L L 4 1 3
— 3} 4 1
n 1 1 0

MAE = (2+3+1+0)/4 = 1.5

I Sundog- I 40

‘ root mean square

error (RMSE)
- predicted rating actual rating error
S 3 4
n (e) 2 4 1 9
=1 y L xl g 4 L
T 1 1 0
\ n

RMSE= /(4 +9+ 1+ 0)/4=1.87

I Sundog- I 41

how did we get
here?

Sundog-

42

evaluating top-n
recommenders

) = Recommended Movies

3 R o R, " iaic T 8 JORDAN

OLUTI®@N % i * - e & [o2 W el :
.% ' g THE AR ARy ' \ MY TRIP DOWN THE

7

W -;;\fa,__ - & @& | P é‘\&'_ a2
% [/ LESLIE
EV

Sundog’ 43

leave-one-out cross
validation

yrime Recommended Movies

EVOLUTION A% » S

Sundog-

¢ LESLIE
JORDAN

MY TRIP DOWN THE

PINK CARPET

44

average reciprocal
hit rate (ARHR)

Sundog-

cumulative hit rate
(cHR)

Sundog-

rating hit rate (rHR)

Sundog-

5.0
4.0
3.0
2.0
1.0

0.001
0.004
0.030
0.001
0.0005

47

coverage

% of <user, item> pairs that can be predicted

I Sundog-

diversity

I Sundog-

(1-9)

S = avg similarity between recommendation pairs

novelty

mean popularity rank of recommended items

I Sundog-

the long tail

Sundog-

churn

how often do
recommendations change?

responsiveness

I Sundog-

how quickly does new
user behavior influence
your recommendations?

what's important?

@0\9” sundog-education.com

uuuuuuu

online A/B tests!

I Sundog-

perceived quality

I Sundog-

| quiz time |

Education

which metric was
used to evaluate
the netflix prize?

| /Sundog

Education

which metric was
used to evaluate
the netflix prize?

root mean squared error (RMSE)

| /Sundog

Education

what's a metric for top-n
recommenders that
accounts for the rank of
predicted items?

what's a metric for top-n
recommenders that
accounts for the rank of
predicted items?

average reciprocal hit rank

which metric measures how popular or
obscure your recommendations are?

I mog” I 62

Education

novelty

which metric measures how popular or
obscure your recommendations are?

I mog” I 63

Education

which metric would tell us if we're recommending
the same types of things all the time?

I @og” I 64

diversity

which metric would tell us if we're recommending
the same types of things all the time?

I @og” I 65

which metric
matters more
than anything?

I {““‘;\o\gm sundog-education.com

Education

which metric
matters more
than anything?

the results of online a/b tests

uuuuuu

| code walkthrough |

EEEEEEEEE

| code walkthrough |

EEEEEEEEE

| code walkthrough |

EEEEEEEEE

building a
recommender engine

I Sundog-

surpriselib algorithm
base class

]
_ 1]

I {““‘;\o\gm sundog-education.com

Education

creating a

implement an function

class MyOwnAlgorithm (AlgoBase) :

def 1init (self):
AlgoBase. 1nit (self)

def estimate (self, user, item):

return 3

Sundog-

/3

building on top of
surpriselib

| /Sundog

Education

algorithm bake-offs

I {““‘;\o\gm sundog-education.com

Education

it's just this easy

Sundog-

Load up common data set for the recommender algorithms
(evaluationData, rankings) = LoadMovieLensData()

Construct an Evaluator to, you know, evaluate them
evaluator = Evaluator(evaluationData, rankings)

Throw in an SVD recommender
SVDAlgorithm = SVD(random_state=10)
evaluator.AddAlgorithm(SVDAIgorithm, "SVD")

Just make random recommendations
Random = NormalPredictor()
evaluator.AddAlgorithm(Random, "Random")

Fight!
evaluator.Evaluate(True)

let’'s jump in

Sundog-

77

| code walkthrough |

EEEEEEEEE

| content-based
filtering |

EEEEEEEEE

examples of movie
attributes

Sundog-

80

movielens genre

data
movield title genres
1Toy Story (1995) Adventure | Animation | Children| Comedy | Fantasy
2 Jumanji (1995) Adventure | Children|Fantasy
3Grumpier Old Men (1995) Comedy|Romance
4Waiting to Exhale (1995) Comedy|Drama|Romance

S5Father of the Bride Part 11 (1995) Comedy

Action* Adventure* Animation* Children's* Comedy*
Crime* Documentary* Drama* Fantasy* Film-Noir* Horror*
Musical* Mystery* Romance* Sci-Fi* Thriller* War*
Western

Sundog-

cosine similarity

adventure

I Sundog-

©
c
9
n
c
@
E
9
m
=
=

o)
&)
©
Q.
p)

83

™

Sundog

convert to

Otitle genres
1Toy Story (1995) Adventure | Animation | Children|Comedy | Fantasy
2 Jumaniji (1995) Adventure|Children | Fantasy

3Grumpier Old Men (1995) Comedy|Romance
4 Waiting to Exhale (1995) Comedy|Drama|Romance

Movie action adventure animation children's comedy crime documentary drama fantasy film-noir horror musical western mystery romance sci-fi thriller war western2
Toy Story 0 1 1 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0
Jumaniji 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0
Grumpier Old Men 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0
Waiting to Exhale 0 0 0 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0
Father of the Bride 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

Sundog-

multi-dimensional
cosines

CosSim(x,y) =

I Sundog-

2 XiYi

Zix'

Y

Ziyl'z

turning it into

CosSim(x,y) =

Sundog-

2 Xi Vi

Jzﬂszﬁf

def computeGenreSimilarity(self, moviel,

genresl = genres[moviel]
genres2 = genres[movie2]
sumxx, sumxy, sumyy = 0, 0, O
for 1 in range(len (genresl)) :

X = genresl[1i]

y = genres2[i]

sumxx += X * X

sumyy +=y * y

sumxy += x * y

movieZz,

return sumxy/math.sqrt (sumxx*sumyy)

genres) :

86

release years

Sundog-

time similarity

def computeYearSimilarity(self, moviel, movieZ2, years):
diff = abs(years[moviel] - years[moviel])
sim = math.exp(-diff / 10.0)
return sim

20

-20

Sundog-

k-nearest-neighbors

.-I»I

IK‘"“;\O\Q” sundog-education.com I 89

Education

knn

Sundog-

Build up similarity scores between this item and everything the user rated

neighbors = []
for rating in self.trainset.ur[u]:
genreSimilarity = self.similarities[i,rating[0]]

neighbors.append((genreSimilarity, ratingl[l]))

Extract the top-K most-similar ratings
k neighbors = heapg.nlargest (self.k, neighbors, key=lambda t: t[0])

Compute average sim score of K neighbors weighted by user ratings
simTotal = weightedSum = O
for (simScore, rating) in k neighbors:
if (simScore > 0):
simTotal += simScore
weightedSum += simScore * rating

if (simTotal == 0):
raise PredictionImpossible('No neighbors')

predictedRating = weightedSum / simTotal

return predictedRating

90

let’'s dive in

Sundog-

91

| code walkthrough |

EEEEEEEEE

[implicit ratings |

EEEEEEEEE

a note about
implicit ratings.

the algorithms we cover work just as well with
implicit ratings as explicit ratings.

implicit ratings would be things like clicking on
a link, purchasing something — doing
something that is an implicit indication of
interest instead of an explicit rating.

I Sundog-

implicit data can be
powerful

it tends to be plentiful

implicit purchase ratings can be higher quality than explicit ratings

Sundog-

95

using implicit data

just model a click / purchase / whatever as a positive rating of some
arbitrary (yet consistent) value.

do NOT model the absence of a click / purchase as a negative rating —
it's just missing data.

the math generally works out the same.

I Sundog-

not all implicit ratings are
created equal.

Sundog-

Sundog-

08

mise en scene

Sundog-

99

mise en scene

Sundog-

Column #

1

Column Name

ML_ID

f1

f2

f3

f4

5

fé

f7

Description

MovieLens movie ID

Average shot length

Mean of color variance
across the key Frames

Standard deviation of
color variance across the
key Frames

Mean of motion average
across all the frames

Mean of motion standard
deviation across all the
frames

Mean of lighting key
across the key frames

Number of shots

| code walkthrough |

EEEEEEEEE

I 101

credits

Yashar Deldjoo, Mehdi Elahi, Paolo Cremonesi “Using
Visual Features and Latent Factors for Movie
Recommendation”, ACM RecSys Workshop on New Trends
in Content-based Recommender Systems (CBRecSys),
ACM RecSys 2016, Massachusetts Institute of Technology

(MIT), September 15-19, 2016
http://recsys.deib.polimi.it/?page_id=353

Sundog’ 102

exercise

I Sundog-

which content attribute
Is most powerful in
producing “good”
recommendations?

genre, release year, or
mise en scene?

I 103

‘ my results

genre

RMSE: 0.9552

Black Mask (Hak hap) (1996)

Joy Ride (2001)

What's Up, Tiger Lily? (1966) Missing,
The (2003)

City of God (Cidade de Deus) (2002)
24: Redemption (2008)

The Hateful Eight (2015)

Wyatt Earp (1994)

True Grit (2010)

Shooter, The (1997)

I Sundog-

year

RMSE: 0.9626

Clerks (1994)

Disclosure (1994)

Ed Wood (1994)

Houseguest (1994)

Legends of the Fall (1994)
Madness of King George, The (1994)
Mary Shelley's Frankenstein
(Frankenstein) (1994)

Quiz Show (1994)

Secret of Roan Inish, The (1994)
Shallow Grave (1994)

mise en scene

RMSE: 1.0663

Pain & Gain (2013)

Bring It On (2000)

Young Master, The (Shi di chu ma)
(1980)

Celebrity (1998)

Yi Yi (2000)

Eating Raoul (1982)

Stuck on You (2003)

Cat Returns, The (Neko no ongaeshi)
(2002)

Reckless (1984)

Sunless (Sans Soleil) (1983)

I 104

better year-based
recs

In Evaluator.py’'s SampleTopNRecs:

print ("\nWe recommend:")

for userID, movielID, actualRating, estimatedRating, in predictions:
intMovieID = int (movielD)
recommendations.append((intMovieID, estimatedRating, ml.getPopularityRanks () [intMovieID]))

recommendations.sort (key=lambda x: x[2])
recommendations.sort (key=lambda x: x[1], reverse=True)

We recommend:

Clerks (1994) 3.37112480076

Quiz Show (1994) 3.37112480076

Ed Wood (1994) 3.37112480076

Legends of the Fall (1994) 3.37112480076
Crow, The (1994) 3.37112480076

Hoop Dreams (1994) 3.37112480076
Muriel's Wedding (1994) 3.37112480076
Disclosure (1994) 3.37112480076
Adventures of Priscilla, Queen of the Desert, The (1994) 3.37112480076
River Wild, The (1994) 3.37112480076

Sundog’ 105

rneighborhood-
based
collaborative
filtering |

EEEEEEEEE

| 106

(one) anatomy of a
top-N recommender

I Sundog

Music View All & Manage

Star Trekc Discovery (Original

Soi
Series Soundirack) (Chapter 2] (Original Motion Picturs
)

51129 prime

THE BEATLES
-

THE BEATLES

Y

The Beaties: Helpl [Blu-ray]
et Aoy 768

52245 prime

52910 prime.

Magical Mystery Tour [Blu-ray]
Ay 57
$17.36 wprime

X

Page 10120

Star Trek Discov.
Saries Soundirac

51366 prime.

107

ways to measure similarity

I Sundog- I 108

cosine similarity

I Sundog-

CosSim(x,y) =

i XiVi

Zix'

2
l

\

Ziyiz

I 109

sparsity

Indiana Jones Star Wars Shape of Water Incredibles Casablanca
Bob 4
Ted
Alice 5

I Sundog- I 110

adjusted cosine

%O =)y =)
V2t — 02 Xy — 9)3

CosSim(x,y) =

I Sundog- I 111

(item-based) pearson similarity

Yi((x; =Dy — D)
V2l — D22y — 1)?

CosSim(x,y) =

I Sundog- I 112

spearman rank correlation

pearson similarity based on ranks, not ratings

Sundog’ 113

mean squared difference

Yiet,,(Xi — ¥i)*

MSD(x,y) = ‘I ‘
Xy

1

MSDsim(x,y) = MSD(xy) + 1

I Sundog I 114

jaccard similarity

I@” sundog-education.com I 115

Education

recap

’ v -8
cosine
Spearman
adjusted cosine msd
pearson jaccard

I Sundog- I 116

| user-based
collaborative
filtering |

EEEEEEEEE

I 117

user-based
collaborative filtering

o -

Sundog’ 118

user-based collaborative
filtering

Sundog’ 119

user-based
collaborative filtering

Indiana Jones Star Wars Empire Strikes Back Incredibles Casablanca
Bob 4 5
Ted 1
Ann 5 5 5

Sundog’ 120

user-based

collaborative filtering

Indiana Jones Star Wars Empire Strikes Back Incredibles Casablanca
Bob i} 5
Ted 1
Ann 5
Bob Ted Ann

Bob 0

Ted 1

Ann 0

I Sundog-

I 121

user-based
collaborative filtering

Bob Ted Ann
Bob 1 0 1
Ted 0 1
Ann 1 0 1

Bob's neighbors: Ann: 1.0, Ted: 0

Sundog’ 122

candidate
generation

Sundog’ 123

candidate scoring

Sundog 124

candidate sorting

THE STAR. WARS SACA CONTINUES

Sundog’ 125

candidate filtering

THE STAR. WARS SACA CONTINUES

oo '

Sundog’ 126

user-based collaborative
filtering

* user -> item rating matrix

* user -> user similarity matrix
 look up similar users

» candidate generation
 candidate scoring
 candidate filtering

I Sundog- I 127

| code walkthrough |

EEEEEEEEE

I 128

| item-based
collaborative
filtering |

EEEEEEEEE

I 129

things, not people

I Sundog- I 130

item-based collaborative

filtering

Sundog-

Bob

Ted

Ann

Indiana Jones

Star Wars

Empire Strikes Back

Incredibles

Casablanca

131

item-based collaborative
filtering

Indiana Jones Star Wars Empire Strikes Back Incredibles Casablanca
Indiana Jones 1 1 0 0 0
Star Wars 1 1 0
Empire Strikes Back 1 1 1 1 0
Incredibles 1 1 1 1 0
Casablanca 0 0 0 0 1

I Sundog- I 132

item-based collaborative
filtering

THE STARLWARS SACA CONTINUES

GNDIANA TS

| Ll 5ot i =
HElST CRUSAOES

—

Sundog’ 133

| code walkthrough |

EEEEEEEEE

I 134

exercise

Build recommendation candidates from items above a
certain rating or similarity threshold, instead of the top
10.

I Sundog- I 135

exercise solution:

item-based

#kNeighbors = heapg.nlargest (k, testUserRatings, key=lambda t:

kNeighbors = []

for rating in testUserRatings:
if rating([l] > 4.0:

Sundog-

kNeighbors.append (rating)

before

James Dean Story, The (1957)

Get Real (1998)

Kiss of Death (1995)

Set It Off (1996)

How Green Was My Valley (1941)

Amos & Andrew (1993)

My Crazy Life (Mi vida loca) (1993)

Grace of My Heart (1996)

Fanny and Alexander (Fanny och Alexander) (1982)
Wild Reeds (Les roseaux sauvages) (1994)
Edge of Seventeen (1998)

after

Kiss of Death (1995)

Amos & Andrew (1993)
Edge of Seventeen (1998)
Get Real (1998)

Grace of My Heart (1996)
Relax... It's Just Sex (1998)
My Crazy Life (Mi vida loca) (1993)
Set It Off (1996)

Bean (1997)

Joe's Apartment (1996)
Lost & Found (1999)

tl1l])

exercise solution:
user-based

#kNeighbors = heapg.nlargest (k, similarUsers, key=lambda t: t[1l])

kNeighbors = []
for rating in similarUsers:
if rating[l] > 0.95:
kNeighbors.append (rating)

before

Inception (2010)

Star Wars: Episode V - The Empire Strikes Back (1980)
Bourne Identity, The (1988)

Crouching Tiger, Hidden Dragon (Wo hu cang long) (2000)
Dark Knight, The (2008)

Good, the Bad and the Ugly, The (Buono, il brutto, il cattivo,) (1966)
Departed, The (2006)

Dark Knight Rises, The (2012)

Back to the Future (1985)

Gravity (2013)

Fight Club (1999)

Sundog-

after

Star Wars: Episode IV - A New Hope (1977)

Matrix, The (1999)

Star Wars: Episode V - The Empire Strikes Back (1980)
Fight Club (1999)

Back to the Future (1985)

Raiders of the Lost Ark (1981)

American Beauty (1999)

Toy Story (1995)

Godfather, The (1972)

Star Wars: Episode VI - Return of the Jedi (1983)

Lord of the Rings: The Fellowship of the Ring, The (2001)

evaluating collaborative
filtering

I Sundog- I 138

exercise

measure the hit-rate of item-based collaborative filtering.

I Sundog- I 139

exercise solution

sim options = {'name': 'cosine',
'user based': False

}

for uiild in range (trainSet.n users):

userRatings = trainSet.ur[uiid]
kNeighbors = heapg.nlargest (k, userRatings, key=lambda t: t[1l])

candidates = defaultdict (float)
for itemID, rating in kNeighbors:
similarityRow = simsMatrix[itemID]
for innerID, score in enumerate(similarityRow) :
candidates[innerID] += score * (rating / 5.0)

Build a dictionary of stuff the user has already seen

Sundog’ 140

| Kk-nearest-
neighbors (knn)
recommenders

|

EEEEEEEEE

I 141

another way to do it

I Sundog

Music View Al & Manage

STHR TRER

Star Trek: Discovery (Original
Series Soundirack) [Chapter 2]
AR AT 1

$11.29 sprime

A Star Wars Story
(Original Motion Picture
Soundirac
AR ARy 17

$11.88 sprime

THE BEATLES

THE BEATLES

Y

The Beaties: Help! [Blu-ray]

AFA A 768
52249 prime.

A Hard Day's Night (Criterion
Collaction) (Biu-ray + DVD)
A ass

$29.10 prime.

Magical Mystery Tour [Blu-ray]
ey 57

$17.36 prime

X

Page 10120

Star Trakc Discov.
Saries Soundtrac

51366 prime.

142

user-based KNN

for user u and itemii...

|/s;.:o\gw | 143

Education

user-based knn

Zvezv{‘(u) sim(u, v) -« 1y;

2.

Tui = :
venk) sim(u, v)

I Sundog I 144

item-based KNN

for user u and itemii...

|@w | 145

Education

user-based knn

N

ZjEN{‘,'j(i) sim(i,]) - Tuj
rui =

2 jent(jy S L))

I Sundog I 146

| code walkthrough |

EEEEEEEEE

I 147

exercise

try out different similarity metrics: cosine, msd, and pearson.

I Sundog I 148

exercise results:
user-based

cosine

RMSE: 0.9961

One Magic Christmas (1985)
Step Into Liquid (2002)

Art of War, The (2000)

Taste of Cherry (1997)

King Is Alive, The (2000)
Innocence (2000)
Maelstrom (2000)

Faust (1926)

Seconds (1966)

Amazing Grace (2006)

I Sundog-

msd

RMSE: 0.9713

One Magic Christmas (1985)
Step Into Liquid (2002)

Art of War, The (2000)

Taste of Cherry (1997)

King Is Alive, The (2000)
Innocence (2000)
Maelstrom (2000)

Faust (1926)

Seconds (1966)

Amazing Grace (2006)

pearson

RMSE: 1.0016

Othello (1995)

Step Into Liquid (2002)
Dreamscape (1984)

Taste of Cherry (1997)
King Is Alive, The (2000)
Innocence (2000)
Maelstrom (2000)

Last Seduction, The (1994)
Amazing Grace (2006)
Unvanquished, The (1957)

I 149

exercise results:
item-based

cosine

RMSE: 0.9995

Life in a Day (2011)

Under Suspicion (2000)

Asterix and the Gauls (1967)
Find Me Guilty (2006)
Elementary Particles, The (2006)
Asterix and the Vikings (2006)
From the Sky Down (2011)

Vive L'Amour (1994)

Vagabond (1985)

Ariel (1988)

I Sundog-

msd

RMSE: 0.9424

Life in a Day (2011)

Under Suspicion (2000)
Asterix and the Gauls (1967)
Find Me Guilty (2006)
Elementary Particles (2006)
Asterix and the Vikings (2006)
From the Sky Down (2011)
Vive L'Amour (1994)
Vagabond (1985)

Ariel (1988)

pearson

RMSE: 0.9928

Hearts and Minds (1996)
Pokemon the Movie 2000 (2000)
Eureka (2000)

Silent Running (1972)

It Might Get Loud (2008)

Dinner Rush (2000)

Brainstorm (1983)

Europa (Zentropa) (1991)

Gerry (2002)

Soul Kitchen (2009)

I 150

‘ more experiments

KNNWithZScore

RMSE: 0.9347

One Magic Christmas (1985)
Taste of Cherry (1997)

King Is Alive, The (2000)
Innocence (2000)
MaelstrAqm (2000)
Amazing Grace (2006)
Unvanquished, The (1957)
Undertow (2004)

Big Town, The (1987)
Masquerade (1988)

I Sundog-

KNNWithMeans

RMSE: 0.9306

One Magic Christmas (1985)
Taste of Cherry (1997)

King Is Alive, The (2000)
Innocence (2000)
Maelstrom (2000)

Amazing Grace (2006)
Unvanquished, The (1957)
Undertow (2004)

Soul Kitchen (2009)

Big Town, The (1987)

KNNBaseline

RMSE: 0.9129

Digimon: The Movie (2000)

Pokemon 3: The Movie (2001)

City of Industry (1997) Amityville
Curse, The (1990)

Grand, The (2007)

Tracey Fragments, The (2007)

T-Rex: Back to the Cretaceous (1998)
Above the Law (1988)

Enforcer, The (1976)

Kirikou and the Sorceress (1998)

I 151

why is knn so bad?

I Sundog- I 152

Sundog’ 153

translation-based
recommendations

Sundog-

Algorithms | RecSys’17, August 27-31, 2017, Coma, Italy
Translation-based Recommendation
Ruining He Wang-Cheng Kang Julian McAuley
UC San Diego UC San Diego UC San Diego
rdhe@cs.ucsd.edu wckang@eng.ucsd.edu jmeauley@cs.ucsd.edu
ABSTRACT

Modeling the complex interactions between users and items as
well as amongst items themselves is at the core of designing suc-
cessful recommender systems. One classical setting is predicting
users’ personalized sequential behavior (or "next-item’ recommen-
dation), where the challenges mainly lie in modeling “third-order’
interactions between a user, her previously visited item(s), and the
next item to consume. Existing methods typically decompose these
higher-order interactions into a combination of pairwise relation-
ships, by way of which user preferences (user-item interactions)
and sequential patterns (item-item interactions) are captured by sep-
arate components. In this paper, we propose a unified method, Tran-
sRec, to model such third-order relationships for large-scale sequen-
tial prediction. Methodologically, we embed items into a "transition
space’” where users are modeled as translation vectors operating on
item sequences. Empirically, this approach outperforms the state-of-
the-art on a wide spectrum of real-world datasets. Data and code are
available at https://sites.google.com/a/eng. ucsd.edu/ruining-he/.

1 INTRODUCTION

Modeling and predicting the interactions between users and items,
as well as the relationships amongst the items themselves are the
main tasks of recommender systems. For instance, in order to
predict sequential user actions like the next product to purchase,
movie to watch, or placu to visit, it is essential (and challunging.’}
to model the third-order interactions between a user (u), the item(s)
she recently consumed (i}, and the item to visit next (j). Not only

sm
? —r| ﬁ —_—
.--t User iy

— User 2

==> o e

‘i' ;-_;g 4 User uy
== Q

Translation operation:

Sua prev, item + user = nexd item

-

Figure 1: TransRec as a sequential model: Items (movies) are
embedded into a ‘transition space’ where each user is mod-
eled by a translation vector. The transition of a user from
one item to another is captured by a user-specific translation
operation. Here we demonstrate the historical sequences
S, 8% and 8™ of three users. Given the same starting
point, the movie Mission: Impossible I, u; went on to watch
the whole series, uz continued to watch drama movies by
Tom Cruise, and us switched to similar action movies.

FPMC models third-order relationships between u, i, and j by the
summation of two pairwise relationships: one for the compatibility
between u and the next item j, and another for the sequential con-
tinuity between the previous item i and the next item j. Ultimately,
this is a combination of MF and MC (see Section 3.5 for details).
Recently, there have been two lines of works that aim to |mpr0\e

e e T B4 " i od e P 1 Kl

154

translation-based
recommendations

https://sites.google.com/view/ruining-he/

Sundog’ 155

https://sites.google.com/view/ruining-he/

translation-based
recommendations

Table 1: Ranking results on different datasets (higher is better). The number of latent dimensions K for all comparison methods is set to 10.
The best performance in each case 1s underlined. The last column shows the percentage improvement of TransRec over the best baseline.

Dataset |Metric | PopRec BPR-MF FMC FPMC HRM,, HRM,,, PRME TransRec TransRec.,%Improv.
Evinions |AUC 0.4576 05523 05537 05517 06060 05617 06117 0.6063 0.6133 0.3%
PIIONS A\ @50 | 3.42% 3.70% 3.84% 293% 344% 2.79% 251% 3.18% 4.63% 20.6%
Google AUC 0.5391 0.8188 0.7619 07740 0.8640 0.8102 08252 0.8359 0.8691 0.6%
Hit@ 50 | (.32%: 4 .27% 3.549 3,999, 3.55% 4 599, 5.07% 6.379% 6. R4 34 99,

Amacon | AUC 0.6717 07320 07214 07302 07600 07436 07490 0.7659 0.7772 2.26%
“ Hit@50 | 3.22% 451% 4.06% 4.13% 632% 493% 567% 7.16% 1.23% 14.4%
Foursquare AUC 09168 09511 009463 09479 09559 0.9523 009565 09631 09651 0.9%
Hit@50 | 55.60% 60.03% 63.00% 64.53% 60.75% 61.60% 65.32% 66.12% 67.09% 2.7%

Fliver |AUC 0.9459 09722 009568 09718 09695 09687 09728 09727 0.9750 0.2%
Hit@50 | 11.92% 21.58% 22.23% 33.11% 32.34% 3088% 40.81% 3552% 35.02% -13.0%

I Sundog-

I 156

translation-based
recommendations

Sundog-

Translation operation:

prev. item + user =~ next item

>

Figure 1: TransRec: Items (movies) are embedded into a ‘transi-
tion space’ where each user i1s modeled by a translation vector. The
transition of a user from one item to another is captured by a user-
specific translation operation.

157

| model-based
methods]

EEEEEEEEE

| 1se

—

EEEEEEEEE

matrix
factorization N

I 159

the problem

Indiana Jones Star Wars Empire Strikes Back Incredibles Casablanca
Bob 4 5 ? ? ?
Ted ? ? ? ? 1
Ann ? 5 5 5 ?

I Sundog- I 160

principal component
analysis

Sundog’ 161

are
principal components * setosa

® versicolor

® virginica
In [3]: from sklearn.datasets import load iris
from sklearn.decomposition import PCA
iris = load iris()
print (iris.data)
[[5.1 3.5 1.4 0.2] 000 &
[4.9 3. 1.4 0.2]
[4.7 3.2 1.3 08.2]
[4.6 3.1 1.5 ©.2] ®
[5. 3.6 1.4 8.2] ®
[5.4 3.9 1.7 8.4] 'Y X |
o T 0 T o0 O
© 80000 ©
o @
L] L]
% []
L
S . %
L] L)
.
L ..Ii'-
..k i"'* o ¢
.: L 4 .
g ay L
.
L] e r]
(LR .f. * g 00*
L]
. o =0 . e setosa
® & versicolor
. . & virginica

Sundog 162

pca on movie

ratings
Indiana Jones Star Wars Empire Strikes Back Incredibles Casablanca
Bob 4 5 5 4 4
Ted 3 3 3 5 4
Ann 4 5 5 5 2

"Action" "Sci-Fi" "Classic"
Bob 0.3 0.5 0.2
Ted 0.1 0.1 0.8 U
Ann 0.3 0.6 0.1

I Sundog- I 163

pca on movie
ratings

RT

I Sundog-

Bob Ted Ann
Indiana Jones 4 3 4
Star Wars 5 3 5
Empire Strikes Back 5 3 5
Incredibles 4 5 5
Casablanca 4 4 2

"Action" "Sci-Fi" "Classic"
Indiana Jones 0.6 0.3 0.1
Star Wars 0.4 0.6 0
Empire Strikes Back 0.4 0.6 0
Incredibles 0.8 0.2 0
Casablanca 0.2 0 0.8

I 164

matrix factorization

R =UIM"
singular value decomposition (svd)

I Sundog- I 165

but wait

Indiana Jones Star Wars Empire Strikes Back Incredibles Casablanca
Bob 4 5 ? ? ?
Ted ? ? ? ? 1
Ann ? 5 5 5 ?

R - . — U ° MT : .
Bob,Empire Strikes Back Bob Empire Strikes Back

stochastic gradient descent (sgd)

I Sundog- I 166

enough talk

Sundog-

| code walkthrough |

EEEEEEEEE

I 168

a matrix factorization bestiary

Non-Negative Matrix Factorization (NMF) SVD++

Probabilistic Matrix Factorization (PMF) timeSVD++

Probabilistic Latent Semantic Analysis (PLSA) HOSVD

PureSVD CUR

UV Decomposition Factorization Machines

Weighted Regularized Matrix Factorization (WRMF) Factorized Personalized Markov Chains

I Sundog- I 169

tuning svd

print ("Searching for best parameters...")

param grid = {'n epochs': [20, 30], 'lr all': [0.005, 0.010],
'n factors': [50, 1001]}
gs = GridSearchCV (SVD, param grid, measures=['rmse',K 'mae'], cv=3)

gs.fit (evaluationData)

best RMSE score

print ("Best RMSE score attained: ", gs.best score['rmse'])
params = gs.best params|['rmse']
SVDtuned = SVD(n epochs = params['n epochs'], 1lr all = params['lr all'], n factors

= params['n factors'])

Sundog’ 170

exercise

tune the hyperparameters for SVD with the MovielLens data set.

I Sundog- I 171

svd tuning results

I Sundog-

{'n_epochs": 20, 'Ir_all': 0.005, 'n_factors": 50}

Untuned

RMSE: 0.9033

Sixth Sense, The (1999)

Casablanca (1942)

Hamlet (1996)

Monty Python and the Holy Grail (1975)
When We Were Kings (1996)

It Happened One Night (1934)

Bridge on the River Kwai, The (1957)
Smoke (1995)

Big Night (1996)

Seven Samurai (1954)

Tuned

RMSE: 0.9002

Lord of the Rings: The Return of the King, The (2003)
Modern Times (1936)

Lord of the Rings: The Two Towers, The (2002)

Lord of the Rings: The Fellowship of the Ring, The (2001)
Sunset Blvd. (a.k.a. Sunset Boulevard) (1950)

Lawrence of Arabia (1962)

Departed, The (2006)

Raging Bull (1980)

Matrix, The (1999)

Singin' in the Rain (1952)

I 172

Sundog’ 173

sparse linear
methods

Sundog-

SLIM: Sparse Linear Methods
for Top-N Recommender Systems

Xia Ning and George Karypis

Computer Science & Engineering
University of Minnesota, Minneapolis, MN
Email: {xning karypis@cs.umn.edu}

Abstract—This paper focuses on developing effective and
efficient algorithms for rop-N recommender systems. A novel
Sparse LInear Method (SLIM) is proposed, which generates rop-
N recommendations by aggregating from user purchase/rating
profiles. A sparse aggregation coefficient matrix 117 is learned
from SLIM by solving an f{i-norm and {(z-norm regularized
optimization problem. W is demonstrated to produce high-
quality recommendations and its sparsity allows SLIM to generate
recommendations very fast. A comprehensive set of experiments
is conducted by comparing the SLIM method and other state-of-
the-art rop-N recommendation methods. The experiments show
that SLIM achieves significant improvements both in run time
performance and recommendation quality over the best existing
methods.

Keywords-Top-N Recommender Systems, Sparse Linear Meth-
ods, {-norm Regularization

I. INTRODUCTION

The emergence and fast growth of E-commerce have signif-
icantly changed people’s traditional perspective on purchasing
products by providing huge amounts of products and detailed

mrnduot infarmation thue maldine anlina trancastinne saanh

purchase/rating profiles by solving a regularized optimization
problem. Sparsity is introduced into the coefficient matrix
which allows it to generate recommendations efficiently. Fea-
ture selection methods allow SLIM to substantially reduce
the amount of time required to learn the coefficient matrix.
Furthermore, SLIM can be used to do top-N recommenda-
tions from ratings, which is a less exploited direction in
recommender system research.

The SLIM method addresses the demands for high quality
and efficiency in fop-N recommender systems concurrently, so
it is better suitable for real-time applications. We conduct a
comprehensive set of experiments on various datasets from dif-
ferent real applications. The results show that SLIM produces
better recommendations than the state-of-the-art methods at a
very high speed. In addition, it achieves good performance in
using ratings to do top-N recommendation.

The rest of this paper is organized as follows. In Section II,
a brief review on related work is provided. In Section III,
definitions and notations are introduced. In Section IV, the
methods are described. In Section V, the materials used for

S —eao A W OV _at_ . WTW LW A

174

SLIM results

Sundog-

BPRkNN 0.001 le-4 0542 0304 6.20(m) 20.28(m) le-5 0010 0242 0130 1.02(m) 13.53(s)
SLIM 3 0.5 0.579 0347 1.02(h) 16.23(s) 5 05 0255 0.149 11.10(s) 0.51(s)
fsSLIM 100 0.0 0546 0292 12.57(m) 9.62(s) 100 0.5 0252 0.147 16.89(s) 0.32(s)
fsSLIM 400 0.5 0570 0339 14.27(m) 12.52(s) 30 0.5 0252 0.147 5.41(s) 0.16(s)
BX ML10M

method params HR ARHR m 0 params HR ARHR m @
itemkNN 10 - 0.085 0.044 1.34(s) 0.08(s) 20 - 0238 0.106 1.97(m) 8.93(s)
itemprob 30 0.3 0.103 0.050 2.11(s) 0.22(s) 20 05 0237 0.106 1.88(m) 7.49(s)
userkNN 100 - 0.083 0.039 0.01(s) 1.49(s) 50 - 0303 0.146 2.26(s) 34.42(m)
PureSVD 1500 10 0.072 0.037 1.91(m) 2.57(m) 170 10 0294 0.139 1.68(m) 1.72(m)
WRMF 400 5 0.086 0040 12.01(h) 29.77(s) 100 2 0306 0139 16.27(h) 1.59(m)
BPRMF 350 0.1 0.089 0040 895(m) 12.44(s) 350 0.1 0281 0.123 477(h) 5.20(m)
BPRKNN le-<4 0.010 0.082 0.035 5.16(m) 42.23(s) 0.001 le-4 0327 0.156 15.78(h) 1.08(h)
SLIM 3 0.5 0.109 0.055 5.51(m) 1.39(s) 1 2.0 0.311 0.153 50.98(h) 41.59(s)
fsSLIM 100 0.5 0.109 0.053 36.26(s) 0.63(s) 100 0.5 0.311 0.152 37.12(m) 17.97(s)
fsSLIM 30 1.0 0.105 0.055 16.07(s) 0.18(s) 20 1.0 0.298 0.145 14.26(m) 8.87(s)
method Netflix Yahoo

params HR ARHR mt it params HR ARHR mt tt
itemkNN 150 - 0.178 0.088 24.53(s) 13.17(s) 400 - 0107 0041 21.54(s) 2.25(m)
itemprob 10 0.5 0.177 0.083 30.36(s) 1.01(s) 350 0.5 0.107 0.041 34.23(s) 1.90(m)
userkNN 200 - 0.154 0.077 0.33(s) 1.04(m) 50 - 0,107 0.041 18.46(s) 3.26(m)
PureSVD 3500 10 0.182 0.092 29.86(m) 21.29(m) 170 10 0.074 0.027 53.05(s) 11.18(m)
WRMF 350 10 0.184 0.085 2247(h) 2.63(m) 200 8 0090 0.032 16.23(h) 50.05(m)
BPRMF 400 0.1 0.156 0.071 43.55(m) 3.56(m) 400 0.1 0093 0.033 10.36(h) 47.28(m)
BPRkNN 0.01 0.01 0.188 0.092 109I(m) 6.12(m) 0.01 0.001 0.104 0.038 2.60(h) 4.11(h)
SLIM 5 1.0 0.200 0.102 7.85(h) 9.84(s) 5 05 0122 0047 21.30(h) 5.69(m)
fsSLIM 100 0.5 0202 0.104 6.43(m) 5.73(s) 100 05 0.124 0.048 1.39(m) 41.24(s)
fsSLIM 150 0.5 0202 0.104 9.09(m) 7.47(s) 400 05 0123 0.048 2.41(m) 1.72(m)

Columns corresponding to params present the parameters for the correspondineg method

. For methods itemkNN and userkNN. the

175

how SLIM works

2

e
1

AW

I Sundog

B. Learning W for SLIM

We view the purchase/rating activity of user u; on item ¢, in
A (i.e., a;;) as the ground-truth item recommendation score.
Given a user-item purchase/rating matrix A of size m x n, we
learn the sparse n xn matrix W in Equation 2 as the minimizer
for the following regularized optimization problem:

1 . 3 .
minii‘r_'nize §HA - AW ||% + %H“”i‘ + Al|[W|4

subject to W >0 (3)
diag(W) =0,

where ||[W/[; = 337", 377, |wi;| is the entry-wise £,-norm
of W, and | - || is the matrix Frobenius norm. In Equa-
tion 3, AW is the estimated matrix of recommendation scores
(i.e., A) by the sparse linear model as in Equation 2. The
first term %HA — AW||% (i.e., the residual sum of squares)
measures how well the linear model fits the training data, and
|W||% and |W||$ are £p-norm and ¢;-norm regularization

I 176

| recommendations
with deep learning |

EEEEEEEEE

I 177

| intro to deep
learning

EEEEEEEEE

|

I 178

|7deep learning pre-
requisites |

EEEEEEEEE

I 179

gradient descent

Sundog’ 180

autodiff

 Gradient descent requires knowledge of, well, the gradient from
your cost function (MSE)

« Mathematically we need the first partial derivatives of all the inputs
 This is hard and inefficient if you just throw calculus at the problem

» Reverse-mode autodiff to the rescue!
 Optimized for many inputs + few outputs (like a neuron)
« Computes all partial derivatives in # of outputs + 1 graph traversals
« Still fundamentally a calculus trick — it's complicated but it works
* This is what Tensorflow uses

Sundog-

softmax

 Used for classification
* Given a score for each class
* It produces a probability of each class
* The class with the highest probability is the “answer” you get

11—

1

ho(x) = 1+ exp(—0Tz)’ 0.5

X is a vector of input values
theta is a vector of weights

Sundog-

in review

 Gradient descent is an algorithm for minimizing error over multiple
steps

 Autodiff is a calculus trick for finding the gradients in gradient
descent

» Softmax is a function for choosing the most probable
classification given several input values

Sundog’ 183

—

EEEEEEEEE

introducing
artificial neural
networks

|

I 184

the biological
inspiration

- Neurons in your cerebral cortex are
connected via axons

* A neuron “fires” to the neurons it's
connected to, when enough of its
input signals are activated.

 Very simple at the individual neuron
level — but layers of neurons
connected in this way can yield
learning behavior.

e Billions of neurons, each with
thousands of connections, yields a
mind

Sundog’ 185

cortical columns

* Neurons in your cortex seem to be
arranged into many stacks, or
“columns” that process information in
parallel

* “mini-columns” of around 100 neurons
are organized into larger “hyper-
columns”. There are 100 million mini-
columns in your cortex

* This is coincidentally similar to how
GPU’s work...

(credit: Marcel Oberlaender et al.)

I Sundog- I 186

the first artificial
neurons

* 1943l

An artificial neuron “fires” if more than N
input connections are active.

Depending on the number of connections
from each input neuron, and whether a
connection activates or suppresses a
neuron, you can construct AND, OR, and
NOT logical constructs this way.

This example would implement C = A OR B if the threshold is 2 inputs being active.

Sundog-

the linear threshold

unit (ltu)
« 1957!
: S h d f
* Adds weights to the the inputs and thefr
inputs; output is given by weights
a step function Output 1 if sum is >= 0

00

Input 1 Input 2

Sundog

the perceptron

A layer of LTU's

A perceptron can learn by
reinforcing weights that lead
to correct behavior during
training

 This too has a biological
basis (“cells that fire
together, wire together”)

I Sundog-

Input 1

Input 2

Neuron

(1.0)

I 189

multi-layer
perceptrons

« Addition of “hidden
layers”

* This is a Deep Neural
Network

* Training them is trickier —
but we'll talk about that.

Neuron
(1.0)

Input 1 Input 2

I @og” I 190

a modern deep
neural network

» Replace step activation
function with
something better

» Apply softmax to the N
output '

* Training using gradient
descent

| /Sundog

Input 1

softmax

Input 2

Neuron

(1.0)

I 191

[let's play |

mog” I 192

Education

B deep learning N

EEEEEEEEE

| 1o

backpropagation

* How do you train a MLP’s weights? How does it
learn?

» Backpropagation... or more specifically:
Gradient Descent using reverse-mode autodiff!

 For each training step:
» Compute the output error

« Compute how much each neuron in the previous
hidden layer contributed

- Back-propagate that error in a reverse pass

« Tweak weights to reduce the error using gradient
descent

Sundog-

(aka rectifier)

» Step functions don’t work with gradient
descent — there is no gradient!

- Mathematically, they have no useful
derivative.
* Alternatives:
* Logistic function
« Hyperbolic tangent function
« Exponential linear unit (ELU)
 ReLU function (Rectified Linear Unit) 1

* ReLU is common. Fast to compute and
works well.

» Also: “Leaky ReLU", “Noisy ReLU" -3 -2 -1 0 1

* ELU can sometimes lead to faster learning .
though. ReLU function

Sundog-

optimization
functions

 There are faster (as in faster learning) optimizers than gradient descent

« Momentum Optimization

* Introduces a momentum term to the descent, so it slows down as things start to flatten and speeds up
as the slope is steep

* Nesterov Accelerated Gradient

» A small tweak on momentum optimization — computes momentum based on the gradient slightly
ahead of you, not where you are

« RMSProp
» Adaptive learning rate to help point toward the minimum

« Adam

« Adaptive moment estimation — momentum + RMSProp combined
» Popular choice today, easy to use

Sundog’ 196

avoiding

« With thousands of weights to tune, overfitting is a
problem

« Early stopping (when performance starts dropping)

» Regularization terms added to cost function during i V'
training
* Dropout — ignore say 50% of all neurons randomly
at each training step
« Works surprisingly well!
» Forces your model to spread out its learning

S
4

Sundog’ ok e .

tuning your

* Trial & error is one way

e Evaluate a smaller network with less neurons
in the hidden layers

- Evaluate a larger network with more layers T
* Try reducing the size of each layer as you progress =~ * - 00 00
— form a funnel i o =}
« More layers can yield faster learning D-==<:’f'-=-ﬂ-ass§*§g%wﬁ ------- : ;;;;{%::@"‘
e Or just use more layers and neurons than =D =/
you need, and don't care because you use 'g_:‘_;,éig\"'ﬁg
early stopping. — / Q\“'D""

e Use “model zoos”

Sundog’ 198

—

EEEEEEEEE

activation
functions

|

I 199

activation functions

 Define the output of a node / neuron given its input signals

o

Sundog-

linear activation
function

* It doesn't really *do*
anything

» Can't do backpropagation

By Laughsinthestocks - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=44920411

Sundog-

binary step function

e It's on or off

e Can't handle multiple
classification — it's
binary after all

» Vertical slopes don't
work well with calculus!

Sundog-

By Laughsinthestocks - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=44920435

instead we need non-linear
activation functions

» These can create complex mappings between inputs and
outputs
* Allow backpropagation (because they have a useful derivative)

« Allow for multiple layers (linear functions degenerate to a single
layer)

Sundog-

Sigmoid / Logistic /
TanH

* Nice & smooth

 Scales everything from 0-1
Sigmoid / IYogis, ic)or-1to 1 ////
tanh / hyperbolic tangent)

* But: changes slowly for high - -
or low values Sigmoid AKA Logistic

« The “Vanishing Gradient”
problem

« Computationally expensive

« Tanh generally preferred over
sigmoid

TanH AKA Hyperbolic Tangent

By Laughsinthestocks - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=44920533

Sundog-

Rectified Linear
Unit (ReLU)

* Now we're talking
 Very popular choice

» Easy & fast to
compute

* But, when inputs are
Zero or negative, we
have a linear function
and all of its
problems

« The “Dying RelLU

n
p rO b I el | l By Laughsinthestocks - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=44920600

Sundog-

Leaky RelLU

 Solves “dying ReLU" by
introducing a negative
slope below 0 (usually not
as steep as this)

Sundog-

Parametric Rel U
(PReLU)

» ReLU, but the slope in the
negative part is learned
via backpropagation

» Complicated and YMMV

Sundog-

Other ReLU variants

« Exponential Linear Unit (ELU)

» Swish
* From Google, performs really well

« Mostly a benefit with very deep
networks (40+ layers)

* Maxout
« QOutputs the max of the inputs

* Technically ReLU is a special
case of maxout

» But doubles parameters that
need to be trained, not often
practical.

By Ringdongling - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=85402414

Sundog-

Softmax

» Used on the final output layer of a
multiple classification problem

* Basically converts outputs to
probabilities of each classification

- Can’t produce more than one label for Q Q Q

something (sigmoid can)

* Don't worry about the actual function
for the exam, just know what it's used
for.

Sundog-

Choosing an
activation function

-or multiple classification, use softmax on the output layer
RNN'’s do well with Tanh

-or everything else
e Start with RelLU
* If you need to do better, try Leaky RelLU
 Last resort: PReLU, Maxout
» Swish for really deep networks

Sundog-

—

EEEEEEEEE

tensorflow N

I 211

why ?

* It's not specifically for neural networks— it's more generally an
architecture for executing a graph of numerical operations

» Tensorflow can optimize the processing of that graph, and
distribute its processing across a network

« Sounds a lot like Apache Spark, eh?

* It can also distribute work across GPU's!
« Can handle massive scale — it was made by Google

* Runs on about anything
 Highly efficient C++ code with easy to use Python API's

Sundog-

tensorflow basics

 Install with conda install
tensorflow or conda install
tensorflow-gpu

» A tensor is just a fancy name for
an array or matrix of values

* To use Tensorflow, you:

« Construct a graph to compute your
tensors

* Initialize your variables

» Execute that graph — nothing
actually happens until then

Sundog-

World's simplest Tensorflow app:

import tensorflow as tf

a tf.Variable (1, name="a")

b = tf.Variable (2, name="b")
f = a + b
tf.print (f)

creating a neural network
with tensorflow

« Mathematical insights:

« All those interconnected arrows multiplying
weights can be thought of as a big matrix

multiplication @ @ <>
* The bias term can just be added onto the
result of that matrix multiplication | g
» So in Tensorflow, we can define a layer
of a neural network as: Q <>
output =

tf.matmul (previous layer,
layer weights) + layer bilases

By using Tensorflow directly we're kinda Q Q Q
doing this the “hard way.”

Input 1 Input 2

Sundog-

creating a neural network
with tensorflow

 Load up our training and testing data

» Construct a graph describing our neural network
« Use placeholders for the input data and target labels
» This way we can use the same graph for training and testing!

- Use variables for the learned weights for each connection
and learned biases for each neuron

- Variables are preserved across runs within a Tensorflow
session

 Associate an optimizer (ie gradient descent) to the
network

* Run the optimizer with your training data

. Evaluate your trained network with your testing
ata

Sundog-

215

make sure your features
are normalized

* Neural networks usually work best if your input data is normalized.
* That is, 0 mean and unit variance

» The real goal is that every input feature is comparable in terms of
magnitude

» scikit_learn’s StandardScaler can do this for you

« Many data sets are normalized to begin with — such as the one
we're about to use.

Sundog-

let’s try it out

I Sundog- I 217

B keras N

I Sundog- I 218

‘ why keras?

 Easy and fast prototyping

 Runs on top of TensorFlow (or
CNTK, or Theano)

» scikit_learn integration

* Less to think about — which often
yields better results without even
trying

 This is really important! The
faster you can experiment, the
better your results.

I{un‘;:g” I 219

Education

let’s dive in

Iﬁm sundog-education.com I 220

Education

example: multi-class
classification

« MNIST is an example of multi-class classification.

Sundog-

model

model
model
model
model
model
sgd =

model

= Sequential()

.add(Dense(64, activation='relu', input dim=20))
.add(Dropout(0.5))

.add(Dense(64, activation='relu'))
.add(Dropout(0.5))

.add(Dense (10, activation='softmax'))

SGD(1r=0.01, decay=le-6, momentum=0.9,
nesterov=True)

.compile(loss="categorical crossentropy',

optimizer=sgd, metrics=["'accuracy'])

221

example: binary

classification

Sundog-

model = Sequential()

model.add(Dense(64, input dim=20,
activation='relu')) model.add(Dropout(©.5))
model.add(Dense(64, activation='relu'))
model.add(Dropout(0.5))

model.add(Dense(1, activation='sigmoid'))
model.compile(loss="binary_ crossentropy',
optimizer="'rmsprop', metrics=["'accuracy'])

222

integrating keras
with scikit-learn

from keras.wrappers.scikit_learn import KerasClassifier

def create_model():
model = Sequential()
model.add(Dense(6, input_dim=4, kernel_initializer="normal’, activation="relu’))
model.add(Dense(4, kernel_initializer="normal’, activation="relu’))
model.add(Dense(1, kernel_initializer="normal’, activation='sigmoid’))
model.compile(loss='binary_crossentropy', optimizer="rmsprop', metrics=['accuracy’])
return model

estimator = KerasClassifier(build_fn=create_model, nb_epoch=100, verbose=0)

cv_scores = cross_val_score(estimator, features, labels, cv=10)
print(cv_scores.mean())

Sundog-

‘ let’s try it out

I Sundog I 224

[convolutional
neural networks N

EEEEEEEEE

I 225

cnn’s: what are they
for?

« When you have data that doesn't neatly
align into columns
* Images that you want to find features within
« Machine translation
« Sentence classification
« Sentiment analysis

* They can find features that arent in a
specific spot
* Like a stop sign in a picture
« Or words within a sentence

* They are “feature-location invariant”

Sundog’ 226

Feature maps

cnn’s: how do they
work?

Subsampling Fully connected

* Inspired by the biology of the visual cortex

 Local receptive fields are groups of neurons that only respond to a part of
what your eyes see (subsampling)

 They overlap each other to cover the entire visual field (convolutions)

» They feed into higher layers that identify increasingly complex images
« Some receptive fields identify horizontal lines, lines at different angles, etc. (filters)
« These would feed into a layer that identifies shapes
« Which might feed into a layer that identifies objects

 For color images, extra layers for red, green, and blue

Sundog’ 227

how do we “know”
that's a stop sign?

 Individual local receptive fields scan the

image looking for edges, and pick up the |
edggs ofthe%top siggn inalayper P R’

» Those edges in turn get picked uR by a higher =5
level convolution that identifies the stop
sign’s shape (and letters, t00)

 This shape then gets matched against your
pattern of what a stop sign looks like, also
using the strong red signal coming from your
red layers

» That information keeps %ettin processed
upward until your foot hits the brake!

* A CNN works the same way

Sundog’ 228

cnn’s with keras

« Source data must be of appropriate dimensions
* ie width x length x color channels

« Conv2D layer type does the actual convolution on a 2D image
e Conv1D and Conv3D also available — doesn't have to be image data

» MaxPooling2D layers can be used to reduce a 2D layer down by taking
the maximum value in a given block

* Flatten layers will convert the 2D layer to a 1D layer for passing into a
flat hidden layer of neurons

 Typical usage:
e Conv2D -> MaxPooling2D -> Dropout -> Flatten -> Dense -> Dropout -> Softmax

Sundog-

cnn’s are hard

« Very resource-intensive (CPU, GPU, and
RAM)

» Lots of hyperparameters

 Kernel sizes, many layers with different
numbers of units, amount of pooling... in
addition to the usual stuff like number of
layers, choice of optimizer

 Getting the training data is often the
hardest part! (As well as storing and
accessing it)

Sundog’ 230

specialized cnn
architectures

 Defines specific arrangement of layers, padding, and hyperparameters
* LeNet-5

» Good for handwriting recognition

 AlexNet
« Image classification, deeper than LeNet

 GooglLeNet
« Even deeper, but with better performance
* Introduces inception modules (groups of convolution layers)

« ResNet (Residual Network)
« Even deeper — maintains performance via skip connections.

Sundog-

let’s try it out

Sundog’ 232

|7recurrent neural
networks

EEEEEEEEE

|

I 233

: what are they

for?

Time-series data

« When you want to predict future behavior based
on past behavior

» Web logs, sensor logs, stock trades

» Where to drive your self-driving car based on
past trajectories

Data that consists of sequences of arbitrary
length

« Machine translation

» [mage captions

» Machine-generated music

Sundog-

234

a recurrent neuron

I @og” I 235

another way to look
at it

A “Memory Cell”

— Time '
IK‘"“;\O\Q” sundog-education.com I 236

Education

a layer of recurrent
neurons

I 237

rnn topologies

Sequence to sequence

* i.e., predict stock prices based on
series of historical data

Sequence to vector

° j.e, words in a sentence to
sentiment

Vector to sequence
* i.e., create captions from an image

Encoder -> Decoder

« Sequence -> vector -> sequence
 j.e., machine translation

Sundog-

340,100
1,790,300
462,300 | fi8.80

777,40 136.00
e(K)

399, 400
5700 1,075,900
43.00 1,794,500
19.00 1,436,800

il
UUU

54,00 27,
114 0 89 000
Il h 0T

8,100 B 75
412,400 11,30

25,10 160, u !
114,700 1710

4 4 50 P BB

18.80

Open 2

14,

I

32,132,400
89784

00
oo 70

9,932,600

' 11,240,400

14,295.700

icel gonmuliTgews

238

rnn’s

» Backpropagation through time
 Just like backpropagation on MLP's, but applied to each time step.

 All those time steps add up fast
« Ends up looking like a really, really deep neural network.

« Can limit backpropagation to a limited number of time steps (truncated
backpropagation through time)

Sundog-

rnn’s

 State from earlier time steps get diluted
over time

» This can be a problem, for example when
learning sentence structures

« LSTM Cell

 Long Short-Term Memory Cell

« Maintains separate short-term and long-term
states

« GRU Cell

 Gated Recurrent Unit

. Sirrl}plified LSTM Cell that performs about as
we

Sundog-

rnn’s

* It's really hard

 Very sensitive to topologies, choice
of hyperparameters

* Very resource intensive

* A wrong choice can lead to a RNN
that doesn’t converge at all.

Sundog’ 241

let’'s run an example

Sundog-

B tuning neural
networks

EEEEEEEEE

|

| 2

Learning Rate

* Neural networks are trained
by gradient descent (or
similar means)

« We start at some random
point, and sample different
solutions (weights) seeking
to minimize some cost
function, over many epochs

« How far apart these samples
are is the learning rate

Sundog-

Effect of learning
rate

* Too high a learning rate
means you might overshoot
the optimal solution!

* Too small a learning rate will
take too long to find the
optimal solution

* Learning rate is an example
of a hyperparameter

Sundog-

Batch Size

* How many training samples are
used within each epoch

Somewhat counter-intuitively:

« Smaller batch sizes can work their
way out of “local minima” more
easily

 Batch sizes that are too large can
end up getting stuck in the wrong
solution

« Random shuffling at each epoch
can make this look like very
inconsistent results from run to
run

Sundog-

To Recap

» Small batch sizes tend to not get stuck in local minima

L arge batch sizes can converge on the wrong solution at
random

» Large learning rates can overshoot the correct solution
« Small learning rates increase training time

Sundog-

| neural network
regularization |

EEEEEEEEE

| 2

what is
regularization?

 Preventing overfitting

* Models that are good at making .
predictions on the data they were trained
cb)ni‘bUt not on new data it hasn't seen

efore

- Overfitted models have learned patterns
in the tralnlng data that don't generalize to
the real worl

 Often seen as high accuracy on training
data set, but lower accuracy on test or
evaluation data set.

« When training and eyaluatin? a model, we
us%a training, evaluation, and testing data
sets.

« Regularization techniques are
intended to prevent overfitting.

Sundog-

Chabacano [CC BY-SA 4.0 (https://creativecommons.org/licenses/by-sa/4.0)]

249

Too many layers?
Too many heurons?

softmax

P ———

——— Input 1 Input 2
I {un‘;\o\g” I 250

Education

Dropout

Input 1 Input 2

I@” sundog-education.com I 251

Education

Early Stopping

Sundog-

Epoch
- 4s
Epoch
- 2s
Epoch
- 2s
Epoch
- 2s
Epoch
- 25
Epoch
- 2s
Epoch
- 2s
Epoch
- 2s
Epoch
- 2s
Epoch
- 25

1/1@

- loss:

2/18

- loss:

3/18

- loss:

4/1@a

- loss:

5/1@

- loss:

b/18

- loss:

7718

- loss:

a,/1@

- loss:

a/1@

- loss:

1a/18

- loss:

L2486

L8971

.8653

L8471

L8367

.8260b

L8203

L8157

L9138

. 9897

aCC.

aCC.

dCC.

dCC.

acCC.

dCC.

aCC.

aCC.

aCC.

dCC.

L9382

L9712

.98@3

L9869

L9899

.9915

L9937

L9953

. 9968

.9972

val loss:
val loss:
val loss:
val_loss:
val loss:
val loss:
val loss:
val loss:
val loss:

val loss:

L1437

L8988

L8725

.BB39

.BB7S

0658

.BG678

.B719

L8787

L8887

val acc:
val acc:
val acc:
val _acc:
val acc:
val acc:
val acc:
val acc:
val acc:

val acc:

L9557

.9725

.9786

L9795

L9803

.9796

L9811

L9318

.9825

.98@5

252

[wrappingup |

EEEEEEEEE

I 253

| recommendations
with deep learning |

EEEEEEEEE

I 254

is deep learning
overkill?

I Sundog- I 255

—

EEEEEEEEE

restricted
boltzmann
machines (rbm) |

I 256

rbm’s: the paper

Restricted Boltzmann Machines
for Collaborative Filtering

Ruslan Salakhutdinowv
Andriy Mnih
Geoffrey Hinton

REALAKHIUICS. TORONTO.EDU
AMNIHWYCS, TORONTO.EDU
HINTONWCS, TORONTO.EDU

University of Toronto, § King's Colleee Rd.. Toronto, Ontario M5 34, Canada

Abstract

Most of the existing approaches to collab-
orative filtering cannot handle verv large
data sets. In this paner we show how a

Sundog-

Low-rank approximations based on minimizing the
sum-squared distance can be found using Singular
Value Decomposition (SVD). In the collaborative fil-

tering domain, however, most of the data sets are
s Ronhens amd Toaaleleada SRR

eramon amed oo oheose

257

whatis arbm

visible hidden

NN

N

I 258

rbm backward pass

visible hidden

I 259

rbm’s for
recommender systems

visible (item ratings for hidden

a given user)
(0/0j0]0|1 contrastive
. divergence
I
0710111010 gibbs
EEEE sampler

I @w I 260

Education

| code walkthrough |

EEEEEEEEE

I 261

| code walkthrough |

EEEEEEEEE

I 262

| code walkthrough |

EEEEEEEEE

| 26

exercise

Find the best set of hyperparameters for the rbom algorithm.

I Sundog I 264

| code walkthrough |

EEEEEEEEE

I 265

| Generative
Adversarial
Networks

EEEEEEEEE

|

I 266

Generative
Adversarial
Networks

* Yes, it's the tech behind
“deepfakes” and all those viral
face-swapping and aging apps

e But researchers had nobler
Intentions...

« Generating synthetic datasets to
remove private info

« Anomaly detection
« Self-driving
 Art, music

This person doesn't exist.

Datascienceara bic1, CC BY-SA 4.0
<https://creativecommons.org/licenses/by-sa/4.0>, via Wikimedia

Sundog: e 267

GAN's

« Learns the actual distribution of latent vectors

« Doesn't assume Gaussian normal distributions Real faces Discriminator ,Fakel
like VAE's
OO e > &
« The generator maps random noise(!) to a | 2 Se W/ n
probability distribution Q &0 © © Q' Q0
« The discriminator learns to identify real ¥ QO 0 (@) © iAW
images from generated (fake) images L A &0 (©) (OR D
« The generator is trying to fool the
discriminator into thinking its images are real Generator Real
» The discriminator is trying to catch the
generator ying ® (@) g
« The generator and discriminator are O ©
adversarial, hence the name... e © e O
« Once the discriminator can't tell the difference e _8
anymore, we're done (in theory) O
O Generated faces

Sundog’ 268

transpose
convolution

Stride 2

Input: 2x2

Sundog-

Output: 4x4

The generator may use Conv2DTranspose layers
to reconstruct images from random input

It learns weights used to create new image
pixels from lower-dimensional representations

» Well, it can be used on more than just
images

Stride of 2 is often used
Can use max-unpooling (inverse of max-pooling)

Think of the decoder as a CNN that works
backwards.

fancy math

-"Ein -[“S'}* V{ﬂ: UJ — H::':cwm.:c.[mﬁ[mg ﬂ(ﬂ‘}] il EE-“*P;(.E:: [1'?'1%":1 o D{G{E}}]]

 That's the adversarial loss function.

« We call it a “min-max game”
« The generator is minimizing its loss in creating realistic images
« The discriminator, at the same time, is maximizing its ability to
detect fakes
 Itis complicated and delicate.
« Training is very unstable; lots of trial & error / hyperparameter tuning
* Mode collapse
« Vanishing gradients

Sundog’ 270

| code walkthrough |

EEEEEEEEE

I 271

[deep neural
networks for
recommendationﬁ

EEEEEEEEE

I 272

AutoRec: Autoencoders Meet Collaborative Filtering

autoencoders for . o
: “ " B S e o -0 X"
rec0 m m en d at I O n S (a utO rec) suvash.sedhain@anu.edu.au, { aditya.menon, scott.sanner }@nicta.com.au,

lexing.xie@anu.edu.au

I Sundog I 273

deeper networks

input: None, 1 input: None, 1)
O Item: InputLayer P o) User: InputLayer £ (one,
W It e r a s i output: | (None, 1) . output: | (None. 1)
A A
i . . input: None, 1) . . nput: None, 1
Movie-Embedding: Embedding 4 (one, User-Embedding: Embedding 4 (\I . 1
output: | (None, 1, §) - output: | (None, 1. 5)
input: lone, 1, 8 input: None, 1. 5
FlattenMovies: Flatten P (None, 1, 8) FlattenUsers: Flatten P (None, 1, 5)
output: (None, 8) output: (None, 5)
nput: Nomne, 8 mnput: Nomne, 5
dropout_1: Dropout P (one, 8) dropout_2: Dropout i (None, 5)
- output: | (Nomne, 8) - output: | (Note, 5)

o~

mput: | [(None, 8), (None, 5)]
output: (None, 13)

Concat: Merge

Y

mnput: (None, 13)
output: | (None, 100)

FullyConnected-1: Dense

Y

mnput: | (None, 100)
output: | (None, 50)

FullyConnected-2: Dense

Cred i't: FullyConnected-3: Dense oﬁfplz‘;: gzz:: ig;
https://nipunbatra.github.io/blog/2017 |

/reCO m m en d_ke ra S o ht m I Activation: Dense input._| (None, 20)

output: | (None, 1)

Sundog 274

| code walkthrough |

EEEEEEEEE

I 275

[session-based
recommendations
with rnn’s]

EEEEEEEEE

I 276

e-commerce
clickstream

« Including New Motorial from
51277 THEr, wd STARTRER. X1

ﬂﬂln' M’[I(

5TAR TREK .

HOW TO SPEAK

NNNNNNNNNNNNN
NNNNNNNNNNNNNNN

Sundog’ 277

video views

reirleving lesn mneybe? what is lambada?

|;¥
o
g

e Ed ... 7:26 [

7 Tips for Getting Hired at How to Get Experience in Big Introducing AWS DynamoDB Introducing CORS: Cross- Intro to AWS Lambda Using Versioning with AWS
Amazon or Google Data 56 views + 4 months ado « 100% Origin Resource Sharing 65 views - 4 months aqo - 100% Lambda
795 views - 3 months ago - 95% 2K views + 3 months ago - 100% _ 1.8K views » 4 months ago - 100% _ 432 views - 4 months ago - 100

Sundog’ 278

‘ the paper

I Sundog-

Published as a conference paper at ICLR 2016

SESSION-BASED RECOMMENDATIONS WITH
RECURRENT NEURAL NETWORKS

Balizs Hidasi * Alexandros Karatzoglou

Gravity R&D Inc. Telefonica Research

Budapest, Hungary Barcelona, Spain

balazs.hidasi@gravityrd.com alexk@tid.es

Linas Baltrunas ' Domonkos Tikk

Netflix Gravity R&D Inc.

Los Gatos, CA, USA Budapest, Hungary

lbaltrunas@netflix.com domonkos.tikk@gravityrd.com
ABSTRACT

We apply recurrent neural networks (RNN) on a new domain., namely recom-
mender systems. Feal-life recommender systems often face the problem of having
to base recommendations only on short session-based data (e.g. a small sportsware
website) instead of long user histories (as in the case of Netflix). In this situation
the frequently praised matrix factorization approaches are not accurate. This prob-
lem is usually overcome in practice by resorting to item-to-item recommendations,
Le. recommending similar items. We argue that by modeling the whole session,
more accurate recommendations can be provided. We therefore propose an RNMN-
based approach for session-based recommendations. Our approach also considers
practical aspects of the task and introduces several modifications to classic RNNs
such as a ranking loss function that make it more viable for this specific problem.
Experimental results on two data-sets show marked improvements over widely
used approaches.

I 279

GRU4Rec (gated
recurrent unit)

y[t]
h[t-1] > d .] X + J—L h[t]
r[t] T
X <€ \ z[t]r >| h[t]
> o) 3~ tanh
J J J
_ J
A
x[t]

Image: Jeblad / CC BY-SA 4.0

Sundog’ 280

GRU4Rec

IK‘"“;\O\Q” sundog-education.com I 281

Education

GRU4Rec

» session-parallel mini-batches
» sampling the output
* ranking loss

I Sundog- I 282

is it overly complex?

Sundog’ I 283

exercise

https://bit.ly/2zsr6Lh

convert to python 3 (xrange/range, sort/sort_values)
import pandas and scikit-learn

adapt to the new data set format

create a train/test split

always run with a fresh kernel

I Sundog- I 284

my solution

http://tinyurl.com/y9ducpag

Sundog-

| code walkthrough |

EEEEEEEEE

I 286

Sundog’ 287

[GAN's for
recommenders]

EEEEEEEEE

I 288

GAN's with a twist

Real- Discriminator

IK‘"“;\O\QW sundog-education.com I 289

Education

the paper (well, one
of many really)

Sundog-

RecGAN: Recurrent Generative Adversarial Networks for
Recommendation Systems

Homanga Bharadhwaj Homin Park Brian Y. Lim
Indian Institute of Technology Kanpur National University of Singapore National University of Singapore
homangabi@cse.iitk.ac.in bighp@nus.edu.sg brianlim@comp.nus.edu.sg
ABSTRACT for effective recommendation systems (RS) is an active area of re-

Recent studies in recommendation systems emphasize the signifi-
cance of modeling latent features behind temporal evolution of user
preference and item state to make relevant suggestions. However,
static and dynamic behaviors and trends of users and items, which
highly influence the feasibility of recommendations, were not ad-
equately addressed in previous works. In this work, we leverage
the temporal and latent feature modelling capabilities of Recur-
rent Neural Network (RNN) and Generative Adversarial Network
(GAN), respectively, to propose a Recurrent Generative Adversar-
ial Network (BecGAN) We use customized Gated Recurrent Unit
(GERLT) cells to capture latent features of users and items observable
from short-term and long-term temporal profiles. The modification
also includes collaborative filtering mechanisms to improve the
relevance of recommended items. We evaluate RecGAN using two
datasets on food and movie recommendation. Results indicate that
our model outperforms other baseline models irrespective of user
behavior and density of training data.

search. The necessity of learning static (long-term) and dynamic
(short-term) behaviors and trends of users and items has also been
well recognized but not adequately addressed. Moreover, tradi-
tionally, RS has focused only on discriminative retrieval and rank-
ing of items, which aims to judge the relevancy of an user-item
pair [4, 13, 17, 20]. We believe such a scope limits the effective
learning of comprehensive latent representations of/ between users
and itemns.

In this work, inspired by Recurrent Recommender Networks
(REN) [21] and Information Retrieval GAN (IRGAN) [20], we pro-
pose Recurrent Generative Adversarial Networks for Recommenda-
tion Systems (RecGAN) to improve recommendation performance
by learning temporal latent features of user and item under the GAN
framework. We adopt the generative modelling framework to learn
both the relevancy distribution of items for users (generator) and
to exploit the unlabelled sequence of generated relevant items to
achieve a better estimate of relevancy (discriminator). Furthermaore,
we model temporal aspects found in time-series data using RNMN,

https://homangab.github.io/papers/recgan.pdf

290

| TensorFlow

Recommenders
(TFRS)

EEEEEEEEE

|

I 291

TensorFlow
Recommenders

 From Google!
« Built on top of Keras
« Easy to use, but highly flexible

Sundog-

import tensorflow_datasets as tfds
import tensorflow_recommenders as tfrs

Load data on movie ratings.
ratings = tfds.load("movielens/188k-ratings”, split="train")
movies = tfds.load("movielens/18Bk-movies"”, split="train")

Build flexible representation models.
user_model = tf.keras.Sequential([...])
movie_model = tf.keras.Sequential([...])

Define your objectives.
task = tfrs.tasks.Retrieval(metrics=tfrs.metrics.FactorizedTopK(
movies.batch(128).map(movie_model)

)

Create a retrieval model.
model = MovielensModel(user_model, movie_model, task)
model.compile(optimizer=tf.keras.optimizers.Adagrad(8.5))

Train.
model.fit(ratings.batch(4896), epochs=3)

Set up retrieval using trained representations.
index = tfrs.layers.ann.BruteForce(model.user_model)
index.index(movies.batch(108) .map(model.movie_model), movies)

Get recommendations.

titles = index(np.array(["42"]))
print(f“Recommendations for user 42: {titles[@, :3]}")

I 292

‘ TFRS: retrieval

A retrieval stage selects recommendation retrieval: the two towers
candidates

A ranking stage selects the best candidates and .
ranks them Query model Candidate model

The retrieval model embeds user ID’s and movie
ID’s of rated movies into embedding layers of the
same dimension

« Each ID is mapped to a vector of N

dimensions - -

« Position in this N-dimensional space
represents similarity!

The two are multiplied to create query-candidate
affinity scores for each rating during training

If the affinity score for the rating is higher than
other for other candidates, our model is good

Top-K recs via “brute force” sorting all candidates (user, movie) pairs

IK““‘;:QW sundog-education.com I 293

Education

| code walkthrough |

EEEEEEEEE

I 294

TFRS: ranking

As ranking uses a subset of candidates generated by retrieval, you can do fancier stuff.

For example, actually try to predict ratings using multiple stacked dense layers.

I 295

I {““‘;\o\gm sundog-education.com

Education

| code walkthrough |

EEEEEEEEE

I 296

TFRS: side features

You can augment ratings data with content-based
data, or any other features really

Data should add context
Helps cold-start

Just add them into the query or candidate towers as
additional embeddings

Preprocessing is up to you

Categorical data should turn into embeddings
Continuous features should be normalized (ie
timestamps)

Standardization

Discretization

Vectorizing text

I {““‘;\o\gm sundog-education.com

Education

Query “tower”

I 297

TFRS: deep Query “tower”
retrieval models

..can do similar stuff on the candidate tower

I@” sundog-education.com I 298

Education

TFRS: multi-task
recommenders

Combine different kinds of user behavior
 Page views
» Image Clicks

« Cart adds
e Purchases
* Reviews
 Returns

« Ratings

A joint model may perform better than multiple task-
specific models

Multiple objectives & loss functions

Use transfer learning to learn representations from a task
with more data for a task with less

I Sundog- I 299

TFRS: deep & cross

networks

I Sundog-

Feature crosses are hard

Recommendations where combined
features provide additional context

If you bought fruit AND cookbooks,
recommend a blender

R
Lo

TFRS: deep & cross

networks
Cross Networks explicitly apply feature crossing at each layer ?
0060 Hh
Deep Netwrok A
Output Feature Crossing Bias Input o
©0e0; M
o @ 000! o) O ;'_'_'_'_'_'.'_'_'_'_'.r';'__'.;’.;Z_ﬁ;l_l;’.;ﬁ_ﬁ;ﬁ_ﬁéﬁ_ﬁ;ﬁ_’.';'_;.'._'_;'__'_';'_;_'__'_';';'_'_'_'_'_'_'_'.'_'_'.'_
@ = @ O 000 x0i+ @ |+i{0 . 000000i*
E\!”: E\ .’E \9_9_9‘ O i\!’s O Cross Network 4‘
_ | 000000i%
X1 = Xo © (W x x; + b) + X %
« Combine with a Deep Network (MLP) to make a DCN ~----;-_--_-_--_-;_—-;-_-;_%?-_‘_-‘-’-;-_-;-_--_-_--_-\- -------------
« Stacked, or in parallel 0. 0,000 Of X0
« tfrs.layers.dcn.Cross() makes it easy - EmbeadingLayer & - &

I s u I‘Id Og““ Images: tensorflow.org I 301

TFRS: into
production

Retrieval models are slow when evaluated with
brute force

« Approximate Nearest Neighbor search (ANN)
« ScaNN package from Google does this
« tfrs.layers.factorized_top_k.ScaNN

It is approximate! But way faster

Serving the results in production

« Export saved models to SavedModel format

« Serve the SavedModel via Tensorflow
Serving

« See end of retrieval sample for an example

I Sundog-

arXiv:1908.10396v5 [cs.LG] 4 Dec 2020

Accelerating Large-Scale Inference with Anisotropic Vector

Quantization

Ruigi Guo®, Philip Sun®*, Erik Lindgren*, Quan Geng, David Simcha, Felix Chern, and Sanjiv Kumar
Google Research

{guorq, sunphil, erikml, ggeng, dsimcha, fchern, sanjivk}@google.com

Abstract

(uantization based techniques are the current state-
of-the-art for scaling maximum inner product search
to massive databases. Traditional approaches to
guantization aim to minimize the reconstruction er-
ror of the database points. Based on the observation
that for a given query, the database points that have
the largest inner products are more relevant, we de-
velop a family of anisotropic quantization loss fune-
tions. Under natural statistical assumptions, we show
that quantization with these loss functions leads to a
new variant of vector quantization that more greatly
penalizes the parallel component of a datapoint’s
residual relative to its orthogonal component. The
proposed approach, whose implementation is open-
source, achieves state-of-the-art results on the public
benchmarks available at ann-benchmarks . com.

1 Introduction

Maximum inner product search (MIPS) has become a
popular paradigm for solving large scale classification
and retrieval tasks. For example, in recommendation
systems, user queries and documents are embedded
into a dense vector space of the same dimensionality
and MIPS is used to find the most relevant docu-
ments given a user query (Cremonesi et al., 2010).
Similarly, in extreme classification tasks (Dean et al.,
2013), MIPS is used to predict the class label when
a large number of classes, often on the order of mil-
lions or even billions are involved. Lately, MIPS has

Search (MIPS) problem, consider a database X =
{z:}iz12. n with n datapoints, where each data-
point x; € B? in a d-dimensional vector space. In the
MIPS setup, given a query q € B?, we would like to
find the datapoint = £ X that has the highest inner
product with g, i.e., we would like to identify
x; = arg max(q, r;).
nEX

Exhaustively computing the exact inner product be-
tween g and n datapoints is often expensive and
sometimes infeasible. Several techniques have been
proposed in the literature based on hashing, graph
search. or quantization to solve the approximate max-
imum inner product search problem efficiently. and
the quantization based techniques have shown strong
performance (Ge et al., 2014; Babenko & Lempitsky,
2014: Johnson et al., 2017).

In most traditional quantization works, the objective
in the quantization procedures is to minimize the
reconstruction error for the database points. We
show this is a suboptimal loss function for MIPS. This
is because for a given query, quantization error for
database points that score higher, or have larger inner
products, is more important. Using this intuition.
we propose a new family of score-aware quantization
loss functions and apply it to multiple quantization
techniques. Our contributions are as follows:

« We propose the score-aware quantization loss
function. The proposed loss can work under any
weighting function of the inner product and re-
gardless of whether the datapoints vary in norm.

I 302

| code walkthrough |

EEEEEEEEE

I 303

Sundog 304

|7deep factorization
machines |

EEEEEEEEE

I 305

‘ the paper

I Sundog-

DeepFM: A Factorization-Machine based Neural Network for CTR Prediction

Huifeng Guo*! , Ruiming Tang’, Yunming Ye'', Zhenguo Li’, Xiugiang He”
!Shenzhen Graduate School, Harbin Institute of Technology, China
*Noah’s Ark Research Lab, Huawei. China
'huifengguo @ yeah.net, yeyunming @hit.edu.cn

*{tangruiming, li.zhenguo, hexiugiang } @huawei.com

Abstract

Leaming sophisticated feature interactions behind
user behaviors is critical in maximizing CTR for
recommender systems. Despite great progress, ex-
isting methods seem to have a strong bias towards
low- or high-order interactions, or require exper-
tise feature engineering. In this paper, we show
that it is possible to derive an end-to-end learn-
ing model that emphasizes both low- and high-
order feature interactions. The proposed model,
DeepFM, combines the power of factorization ma-
chines for recommendation and deep leaming for

feature leaming in a new neural network architec-
ture. Compared to the latest Wide & Deep model

+ Addition ——p Welghi-] Conmectlon
Norma| Comnect !
0K tnner Prodee

ﬂb’ Sigmold Fuset fon

&F Acnivation Function - e

1
e R R) || e taver
| P Laye e 1

component share the same input raw feature vector, which enables
DeepFM to learn low- and high-order feature interactions simulta-
nesusly from the input raw features.

I 306

higher-order
feature interactions

e app category
e time

e app category
e gender
e age

Sundog’ 307

deepfm

architecture

I Sundog-

I)) —
Addition e Wl ghl~1 Connection [Uni I

.) .
— Normal Connection Output Units I

X Inner Product

,\) Sigmoid Function 2 FE. N

Field i Field j Field m

Figure 1: Wide & deep architecture of DeepFM. The wide and deep
component share the same input raw feature vector, which enables
DeepFM to learn low- and high-order feature interactions simulta-
neously from the input raw features.

I 308

an ensemble approach

I Sundog- I 309

—

EEEEEEEEE

neural
collaborative
filtering

|

I 310

neural collaborative
filtering (ncf)

« Combines the strengths of matrix factorization and neural networks

« Matrix factorization has no non-linear steps, and can’t capture non-linear
relationships

 ..But neural networks do!

« So, feed users and items through a Generalized Matrix Factorization (GMF) and
a Multi-Layer Perceptron (MLP) in parallel

» Feed their outputs into a NeuMF layer that concatenates them

I Sundog- I 24kl

neural collaborative

filtering

I Sundog-

A" 4
A4

IOV

Element-wise Product

PIIOOOD>V

MF User Vector MLP User Vector MF Item Vector MLP Item Vector

Training
Score @ LT @ Target
¥ \X Log Loss

Concatenation

> <CCLLLLLLLLLK

v

DI

2>

<
A
A
VN
A
A
N
N
A
VN

<<
A
A
N

MLP Layer N

A
. RelU
A

MLP Layer 2

n

Concatenation

> MLP Layer 1 <

00000“0

o

ono 0

o

User ()

Item (/)

I 312

introducing
librecommender

 Like surpriselib, but with Tensorflow (or PyTorch, depending on the algorithm)
« Supports newer Al-based algorithms
« Transformers!
« GRU4Rec
* YouTube
« DeepFM
« Item or user-based CF
 ALS
* Neural Collaborative Filtering
..and many more
« Hybrid recommenders with CF and content-based features
« Implicit or explicit data
* Includes both training (libreco) and serving (libserving) modules

I Sundog- I 2|

librecommender:
S i m p I e exa m p I e train_data, eval_data, test_data = random_split(data, multi_ratios=[0.8, 0.1, 0.1])

train_data, data_info = DatasetPure.build_trainset(train_data)

eval_data = DatasetPure.build_evalset(eval_data)

test_data = DatasetPure.build_testset(test_data)

print(data_info) # n_users: 5894, n_items: 3253, data sparsity: 0.4172 %

lightgen = LightGCN(
task="ranking",
data_info=data_info,
loss_type="bpr",
embed_size=16,
n_epochs=3,
Ir=1e-3,
batch_size=2048,
num_neg=1,
device="cuda",
)
monitor metrics on eval_data during training
lightgen.fit(
train_data,
neg_sampling=True, # sample negative items for train and eval data
verbose=2,
eval_data=eval_data,

metrics=["loss", "roc_auc", "precision",

)

predict preference of user 2211 to item 110

print("prediction: ", lightgcn.predict(user=2211, item=110))

recommend 7 items for user 2211

print("recommendation: ", lightgcn.recommend_user(user=2211, n_rec=7))

recall”, "ndcg"],

Sundog-

| code walkthrough |

EEEEEEEEE

I 315

' more technologies
towatch |

EEEEEEEEE

I 316

word2vec

*
-
| hddenleyer
| embeddnglayer
0 boldy gowherenoane s

I @:9” sundog-education.com

Education

I 317

extending word2vec

IK‘"“;\O\Q” sundog-education.com I 318

Education

3D cnn’s for
session-based recs

descriptions
categories

clicks (time)

Sundog’ 319

3D cnn'’s for
session-based recs

I Sundog-

Softmax

Fuilly exsnpested

3-0 conwolution

. [. . N AN Reskdual Connection

| M| |
3-D convalution
Name el 1*[size of alphabet)
Time
1™ .:| ck 27 glick 3 ™ click 4t ik 5 click gih lick 7 click

Figure 2: Illustration of the first and last layers.

I 320

the paper

Session-Based Recommender Systems RecSys’17, August 27-31, 2017, Como, Italy

3D Convolutional Networks for Session-based Recommendation
with Content Features

Trinh Xuan Tuan Tu Minh Phuong*
NextSmarty R&D Department of Computer Science
Hanoi, Vietnam Posts and Telecommunications Institute of Technology
tuantx@nextsmarty.com Hanoi, Vietnam

phuongtm@ptit.edu.vn

Sundog’ 321

deep feature
extraction with cnn’s

Sundog-

B scalingitup |

EEEEEEEEE

I 323

[apache spark |

EEEEEEEEE

| 52

installing spark
(if you're brave)

Install Java 8 SDK from Oracle to c:\jdk

Add JAVA_HOME environment variable to where you installed it
Unix: export JAVA_HOME=/usr/lib/jvm/java-1.8.0-openjdk-amd64
Windows: Use the system control panel, and set JAVA_HOME to c:\jdk

Windows only:
Create C:\winutils\bin and copy the winutils.exe file from the ScalingUp folder into it

Set HADOOP_HOME environment variable to c:\winutils\
Add %HADOOP_HOME%\bin to your PATH environment variable

Restart your PC.

Install pyspark using Anaconda Navigator into your RecSys environment.

I Sundog- I 325

spark in a nutshell

I 326

spark software
architecture

Spark Streaming Spark SQL

SPARK CORE

I@” sundog-education.com I 327

Education

rdd’s

resilient
distributed

dataset

I Sundog- I 328

evolution of the
spark api

internally rows,
externally jvm objects

jvm objects row objects

I@” sundog-education.com I 329

Education

| code walkthrough |

EEEEEEEEE

I 330

| code walkthrough |

EEEEEEEEE

I 331

| amazon dsstne N

EEEEEEEEE

I 332

a sample config file
{

“Version": 0.7,
"Name" : "AE",
"Kind" : "FeedForward",
"SparsenessPenalty" : {
"p": 0.5,
"beta": 2.0
2

"Shufflelndices" : false,

"Denoising" : {
"p":0.2
b

"ScaledMarginalCrossEntropy" : {
"oneTarget": 1.0,
"zeroTarget": 0.0,

"oneScale" : 1.0,
"zeroScale": 1.0

}

"Layers": [
{"Name" : "Input”, "Kind" : "Input", "N" : "auto", "DataSet" : "gl_input", "Sparse" : true },
{"Name" : "Hidden", "Kind" : "Hidden", "Type" : "FullyConnected", "N" : 128, "Activation" : "Sigmoid", "Sparse" : true },

{"Name" : "Output”, "Kind" : "Output", "Type" : "FullyConnected", "DataSet" : "gl_output", "N" : "auto", "Activation" : "Sigmoid", "Sparse" : true }
],

"ErrorFunction” : "ScaledMarginalCrossEntropy"

Sundog-

| code walkthrough |

EEEEEEEEE

I 334

scaling up dsstne

—

" Sundog-

0 0 0 A B B

GPU slave

I SIS

learning more

https://amzn.to/2169kAw

Sundog-

—

EEEEEEEEE

amazon
sagemaker

|

I 337

sagemaker

I@” sundog-education.com I 338

Education

movielens +
sagemaker

I @w I 339

Education

| code walkthrough |

EEEEEEEEE

| s

| other systems of
note _|

EEEEEEEEE

I 341

let's be clear about
surpriselib

I Sundog I 342

amazon
personalize

inventory,
user data

behavior
data

| /Sundog- | 343

Education

recombee

Al-powered recommendation engine
RESTful API / SDK (JavaScript, Python, Node.js, PHP. Java, etc.)
you send it activity data, it gives you recommendations.

3 tiers of pricing based on usage ($99/mo - $1499/mo)

client = recombee.ApiClient('database-id', dbPublicToken);

client. (recombee.AddDetailView('user 42', 'item_x'));

client. (recombee.RecommendltemsToUser('user 42, 5, {filter: " 'expires' > now()"}), (err, resp) => {

I 344

predictionlO

apache, open-source machine learning server
not specifically for recommenders

simplifies deployment of web services to host trained

models @B PredictionIO

similar in spirit to SageMaker
for recommendations, you're limited to Apache Spark out

of the box
but you can add your own.

I Sundog I 345

richrelevance

the granddaddy of hosted, personalization-
as-a-service

richfeleVoRce

lots of big-name clients

DELIVER PERSONALIZED

OMNICHANNEL EXPERIENCES
St a rt e d by S O m e eX- A m a Z O n g u yS The world’s top retailers and brands personalize with Big Data & Al powered by RichRelevance

“Xen Al” — not just a black box

RichRelevance is the world’s leading personalization provider. Our cloud-based solution empowers the world’s best

companies to personalize their customers’ experiences resulting in over $35B in attributable sales.

“personalization cloud” — personalized
recs, nav, content, search

EXPLORE THE PERSONALIZATION CLOUD

S
- - i - -

pricing: if you have to ask...

I {un‘;\o\g” I 346

Education

many, many more

Peerius — Strands — SLI Systems — ParallelDots — Azure ML — Gravity
R&D — Dressipi — Sajari — IBM Watson — Segmentify — Mr. Dlib -
Raccoon — Universal Recommender — HapiGER — Mahout — RecDB -
Oryx — Crab — LightFM — Rexy - QMF — Spotlight — tensorrec — hermes -
CaseRecommender — ProbQA - Microsoft Recommenders — Gorse —
Cornac - Devooght — LIBMF — RankSys — LibRec — Easyrec — Lenskit —
Apache Giraph

I Sundog I 347

—

EEEEEEEEE

system
architecture N

| s

recommendations in the real
world: pre-computed recs

train

deploy

I @w I 349

Education

recommendations in the real world:
real-time collaborative filtering

train

deploy

I @\09” I 350

Education

recommendations in the real
world: deploy a trained model

train

deploy

I mog”

Education

I 351

the cold-start
problem

I Sundog- I 352

cold-start: new user
solutions

 use implicit data

e use cookies (carefully)

* geo-ip

e recommend top-sellers or promotions
* interview the user

I Sundog- I 353

cold-start: new item
solutions

e just don't worry about it

 use content-based attributes

« map attributes to latent features (see LearnAROMA)
* random exploration

I Sundog- I 354

| exercise: random
exploration |

EEEEEEEEE

I 355

| code walkthrough |

EEEEEEEEE

| 3se

stoplists

Sundog-

things you might
stoplist

 adult-oriented content

 vulgarity

« legally prohibited topics (i.e. Mein Kampf)
 terrorism / political extremism

* bereavement / medical

« competing products

* drug use

* religion

I Sundog- I 358

exercise: implement
a stoplist N

EEEEEEEEE

I 359

| code walkthrough |

EEEEEEEEE

| 360

‘ filter bubbles

I Sundog- I 361

transparency and
trust

Sundog-

We're recommending Science Fiction & X

Fantasy Books because

YOU PURCHASED

Star Trek: The Next Generation -

Mirror Broken
Scott Tipton

The World of The Orville

Jeff Bond

Star Trek Phaser Remote
Control Replica - Universal TV
Hemote Prop...

To Boldly Go: Rare Photos from
the TOS Soundstage - Season
Three

Gerald Gurian

T Baldhe (30 Rara Phatoe frnm

Cancel

|_| Don't use for
— recommendations

|_| Don't use for
— recommendations

|_ Don't use for
— recommendations

|_| Don't use for
— recommendations

[1 Don't use for

362

outliers

I@m sundog-education.com I 363

Education

| exercise: filtering
outliers

EEEEEEEEE

|

| 364

| code walkthrough |

EEEEEEEEE

I 365

gaming the system

Sundog’ 366

implicit data,
explicit problems.

I Sundog- I 367

international
markets and laws

Sundog’ 368

dealing with time

Sundog’ 369

value-aware
recommendations

Sundog’ 370

| case studies N

EEEEEEEEE

I 371

B youtube N

I @og” I 372

the paper

Deep Neural Networks for YouTube Recommendations

Paul Covington, Jay Adams, Emre Sargin
Google
. Mountain View, CA
{pcovington, jka, msargin}@google.com

ABSTRACT

YouTube represents one of the largest scale and most sophis-
ticated industrial recommendation systems in existence. In
this paper, we describe the system at a high level and fo-
cus on the dramatic performance improvements brought by
deep learning. The paper 15 split according to the classic
two-stage information retrieval dichotomy: hrst, we detall a
deep candidate peperation meodel and then describe a sepa-
rate deep ranking model. We also provide practical lessons
and insights derived from designing, iterating and maintain-
ing a massive recommendation system with enormous user-

facing impact.

Sundog’ 373

youtube's
challenges

e scale
e freshness
* hoise

Sundog-

Recommended

; i
] e i § f 553
Star Trek Discovery Season 2 Replicator/Transporter Weird Al Yankovic Explains Why Are There No Inside Grande Pines Thunderstruck by

Trailer Comic Con (2019) (Would You Rather) -... Autotune Mosquitoes at Disney World? Observatory: Top-of-the-line... Steve'n'Seagulls (LIVE)

Phe

b Plays

Trailer MP

vs - 2days ago -

\ . THE RETURLLOF

STAR TREK NEWS - New TV lofi hip hop radio - beats to George Carlin - Keeping Brent Spiner in the role that Why Star Trek Nemesis Comic-Con 2018 Official

Shows announced: The... relax/study to People Alert made him famous. Failed - Brent Spiner Trailer: THE ORVILLE |...
B CarlinFan i
52k 2. day

374

youtube’s (and google’s)
answer to everything

'
-
-

e

Sundog’ 375

youtube’'s candidate

) video vectors class
generatlon top-N _ - softmax | probabilities
user vector _
Rt
Rt

video watches search tokens

I @w I 376

Education

learning to rank

I @w I 377

Education

learnings from
youtube

« don'ttrain just on views

« withhold information

» dealing with series

* rank by consumption, not clicks
» |earning-to-rank

I Sundog- I 378

B netflix]

I Sundog I 379

netflix sources

Francesco Ricci - Lior Rokach
Bracha Shapira Editors

Recommender

NN E
Handbook

Second Edition

Sundog’ 380

what model does
netflix use?

Sundog-

everything is a
recommendation
Q «os owo & 2 -

Home TVShows Movies Recently Added My List

Top Picks for Frank
NETFLIX i EREE ‘
. ! o ;\ /FE?I———-

W #
| bl

NEW EPISODES

T % o

W SAATA

THE MEXT GERMERITION

TV Sci-Fi & Fantasy

= LSRRG
D E NINE — |
i - L

382

whole-page
optimization

Home TVShows Movies RecentlyAdded My List

Reality TV

NETFLIX / ' %\
! g, - [t A" THE GREAT BRITISH |t
BAKING SHOW
LD
NEW EPISODES

Popular on Netflix

? @

/i STAR
\ lHi |.An JEDI ,&"
D i %‘ﬁf

]J;

ASHIES ﬂT

UNF(}PIUNMF

EVEN m&v SCHMIOT

REASONS
WHY

Q kDS DvVD

NETFLIX

'Y

-

383

don't predict
ratings

Sundog 384

personalized

. \I
e 2 %
=== = T
7z =\
i \ N7 N
\7 N/
‘ ‘ N\ 5 \
wl 1‘\\ 7
h R < A 7
[{ . ‘ y e
. X
\ y
™ =\
W
Y,
N
W
g
’

g
(fy= F
|

Sundog’ 385

context-aware

Sundog’ 386

rhybrid approaches |

EEEEEEEEE

| 30

ensemble
approaches

I Sundog- I 388

‘ combining behavior
and semantic data

\" Vi NV ‘
'. :

I 389

| exercise: build a
hybrid
recommender]

EEEEEEEEE

I 390

| code walkthrough |

EEEEEEEEE

| 301

[learning more |

EEEEEEEEE

I 392

current research:
acm sigkdd

Sundog-

The ACM Conference Series on
Recommender Systems

HOME RECSYS 2018 PAST CONFERENCES HOMORS CONTACT

12th ACM Conference on Recommender Systems Recsys 2018 (VANCOUVER)

Vancouver, Canada, 2nd-7th October 2018 About the Conference

The ACM Recommender Systems conference (RecSys) is the
premier international forum for the presentation of new L
research results, systems and techniques in the broad field of
recommender systems. Recommendation is a particular form Registration
of informatien filtering, that exploits past behaviors and user

similarities to generate a list of information items that is persenally tailored to an end-user's Program

RECSYS | Vancouver, BC | 2018

preferences. As RecSys brings together the main international research groups working on

393

collaborative
fi I te ri n g Building Smart Web 2.0 Applications

Programming

Collective
Intellig_e;gce

O'REILLY"

I Sundog I 394

going all-in

Francesco Ricci - Lior Rokach
Bracha Shapira Editors

I Recommender
Systems

Handbook

Second Edition

Sundog’ 395

	Slide Number 1
	recommender systems�getting set up
	Slide Number 3
	Slide Number 4
	Slide Number 5
	course overview
	optional sections
	Slide Number 8
	what it is not
	for example
	what it is
	this is a recommender engine
	many flavors of recommenders
	recommending things
	recommending content
	recommending music
	recommending people
	recommending search results
	understanding you
	understanding you… explicitly
	understanding you… implicitly�
	top-N recommenders
	(one) anatomy of a top-N recommender
	another way to do it
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	train/test
	k-fold cross-validation
	measuring accuracy
	mean absolute error (MAE)
	root mean square error (RMSE)
	how did we get here?
	evaluating top-n recommenders
	leave-one-out cross validation
	average reciprocal hit rate (ARHR)
	cumulative hit rate (cHR)
	rating hit rate (rHR)
	coverage
	diversity
	novelty
	the long tail
	churn
	responsiveness
	what’s important?
	online A/B tests!
	perceived quality
	Slide Number 57
	Slide Number 58
	Slide Number 59
	Slide Number 60
	Slide Number 61
	Slide Number 62
	Slide Number 63
	Slide Number 64
	Slide Number 65
	Slide Number 66
	Slide Number 67
	Slide Number 68
	Slide Number 69
	Slide Number 70
	building a recommender engine
	surpriselib algorithm base class
	creating a custom algorithm
	building on top of surpriselib
	algorithm bake-offs
	it’s just this easy
	let’s jump in
	Slide Number 78
	Slide Number 79
	examples of movie attributes
	movielens genre data
	cosine similarity
	multi-dimensional space!
	convert genres to dimensions
	multi-dimensional cosines
	turning it into code
	release years
	time similarity
	k-nearest-neighbors
	knn code
	let’s dive in
	Slide Number 92
	Slide Number 93
	a note about implicit ratings.
	implicit data can be powerful
	using implicit data
	not all implicit ratings are created equal.
	bleeding edge alert!
	mise en scène
	mise en scène data
	Slide Number 101
	credits
	exercise
	my results
	better year-based recs
	Slide Number 106
	(one) anatomy of a top-N recommender
	ways to measure similarity
	cosine similarity
	sparsity
	adjusted cosine
	(item-based) pearson similarity
	spearman rank correlation
	mean squared difference
	jaccard similarity
	recap
	Slide Number 117
	user-based collaborative filtering
	user-based collaborative filtering
	user-based collaborative filtering
	user-based collaborative filtering
	user-based collaborative filtering
	candidate generation
	candidate scoring
	candidate sorting
	candidate filtering
	user-based collaborative filtering
	Slide Number 128
	Slide Number 129
	things, not people
	item-based collaborative filtering
	item-based collaborative filtering
	item-based collaborative filtering
	Slide Number 134
	exercise
	exercise solution: item-based
	exercise solution: user-based
	evaluating collaborative filtering
	exercise
	exercise solution
	Slide Number 141
	another way to do it
	user-based KNN
	user-based knn
	item-based KNN
	user-based knn
	Slide Number 147
	exercise
	exercise results: user-based
	exercise results:�item-based
	more experiments
	why is knn so bad?
	bleeding edge alert!
	translation-based recommendations
	translation-based recommendations
	translation-based recommendations
	translation-based recommendations
	Slide Number 158
	Slide Number 159
	the problem
	principal component analysis
	eigenvectors are principal components
	pca on movie ratings
	pca on movie ratings
	matrix factorization
	but wait
	enough talk
	Slide Number 168
	a matrix factorization bestiary
	tuning svd
	exercise
	svd tuning results
	bleeding edge alert!
	sparse linear methods (SLIM)
	SLIM results
	how SLIM works
	Slide Number 177
	Slide Number 178
	Slide Number 179
	gradient descent
	autodiff
	softmax
	in review
	Slide Number 184
	the biological inspiration
	cortical columns
	the first artificial neurons
	the linear threshold unit (ltu)
	the perceptron
	multi-layer perceptrons
	a modern deep neural network
	Slide Number 192
	Slide Number 193
	backpropagation
	activation functions (aka rectifier)
	optimization functions
	avoiding overfitting
	tuning your topology
	Slide Number 199
	activation functions
	linear activation function
	binary step function
	instead we need non-linear activation functions
	Sigmoid / Logistic / TanH
	Rectified Linear Unit (ReLU)
	Leaky ReLU
	Parametric ReLU (PReLU)
	Other ReLU variants
	Softmax
	Choosing an activation function
	Slide Number 211
	why tensorflow?
	tensorflow basics
	creating a neural network with tensorflow
	creating a neural network with tensorflow
	make sure your features are normalized
	let’s try it out
	Slide Number 218
	why keras?
	let’s dive in
	example: multi-class classification
	example: binary classification
	integrating keras with scikit-learn
	let’s try it out
	Slide Number 225
	cnn’s: what are they for?
	cnn’s: how do they work?
	how do we “know” that’s a stop sign?
	cnn’s with keras
	cnn’s are hard
	specialized cnn architectures
	let’s try it out
	Slide Number 233
	rnn’s: what are they for?
	a recurrent neuron
	another way to look at it
	a layer of recurrent neurons
	rnn topologies
	training rnn’s
	training rnn’s
	training rnn’s
	let’s run an example
	Slide Number 243
	Learning Rate
	Effect of learning rate
	Batch Size
	To Recap
	Slide Number 248
	what is regularization?
	Too many layers? Too many neurons?
	Dropout
	Early Stopping
	Slide Number 253
	Slide Number 254
	is deep learning overkill?
	Slide Number 256
	rbm’s: the paper
	what is a rbm
	rbm backward pass
	rbm’s for recommender systems
	Slide Number 261
	Slide Number 262
	Slide Number 263
	exercise
	Slide Number 265
	Slide Number 266
	Generative Adversarial Networks
	GAN’s
	transpose convolution
	fancy math
	Slide Number 271
	Slide Number 272
	autoencoders for recommendations (“autorec”)
	deeper networks with keras
	Slide Number 275
	Slide Number 276
	e-commerce clickstream
	video views
	the paper
	GRU4Rec (gated recurrent unit)
	GRU4Rec
	GRU4Rec
	is it overly complex?
	exercise
	my solution
	Slide Number 286
	bleeding edge alert!
	Slide Number 288
	GAN’s with a twist
	the paper (well, one of many really)
	Slide Number 291
	TensorFlow Recommenders
	TFRS: retrieval
	Slide Number 294
	TFRS: ranking
	Slide Number 296
	TFRS: side features
	TFRS: deep retrieval models
	TFRS: multi-task recommenders
	TFRS: deep & cross networks
	TFRS: deep & cross networks
	TFRS: into production
	Slide Number 303
	bleeding edge alert!
	Slide Number 305
	the paper
	higher-order feature interactions
	deepfm architecture
	an ensemble approach
	Slide Number 310
	neural collaborative filtering (ncf)
	neural collaborative filtering
	introducing librecommender
	librecommender: simple example
	Slide Number 315
	Slide Number 316
	word2vec
	extending word2vec
	3D cnn’s for session-based recs
	3D cnn’s for session-based recs
	the paper
	deep feature extraction with cnn’s
	Slide Number 323
	Slide Number 324
	installing spark (if you’re brave)
	spark in a nutshell
	spark software architecture
	rdd’s
	evolution of the spark api
	Slide Number 330
	Slide Number 331
	Slide Number 332
	a sample config file
	Slide Number 334
	scaling up dsstne
	learning more
	Slide Number 337
	sagemaker
	movielens + sagemaker
	Slide Number 340
	Slide Number 341
	let’s be clear about surpriselib
	amazon personalize
	recombee
	predictionIO
	richrelevance
	many, many more
	Slide Number 348
	recommendations in the real world: pre-computed recs
	recommendations in the real world: real-time collaborative filtering
	recommendations in the real world: deploy a trained model
	the cold-start problem
	cold-start: new user solutions
	cold-start: new item solutions
	Slide Number 355
	Slide Number 356
	stoplists
	things you might stoplist
	Slide Number 359
	Slide Number 360
	filter bubbles
	transparency and trust
	outliers
	Slide Number 364
	Slide Number 365
	gaming the system
	implicit data, explicit problems.
	international markets and laws
	dealing with time
	value-aware recommendations
	Slide Number 371
	Slide Number 372
	the paper
	youtube’s challenges
	youtube’s (and google’s) answer to everything
	youtube’s candidate generation
	learning to rank
	learnings from youtube
	Slide Number 379
	netflix sources
	what model does netflix use?
	everything is a recommendation
	whole-page optimization
	don’t predict ratings
	personalized ranking
	context-aware
	Slide Number 387
	ensemble approaches
	combining behavior and semantic data
	Slide Number 390
	Slide Number 391
	Slide Number 392
	current research:�acm sigkdd
	collaborative filtering
	going all-in

