
sundog-education.com 1

recommender
systems

Copyright © 2018-2021 Sundog Software LLC, DBA Sundog Education
All rights reserved worldwide.
Stock images licensed via Getty Images / iStockPhoto.com

sundog-education.com 2

recommender systems
getting set up

install
scikit-surprise

install
anaconda

download course
materials

sundog-education.com 3

let’s do
this.

sundog-education.com 4

sundog-education.com/RecSys

sundog-education.com 5

setup walkthrough

sundog-education.com 6

course overview
• getting started
• intro to python
• evaluating recommender systems
• building a recommendation engine
• content-based filtering
• neighborhood-based collaborative filtering
• model-based methods
• intro to deep learning
• recommendations with deep learning
• scaling it up
• challenges of recommender systems
• case studies
• hybrid solutions
• more to explore

sundog-education.com 7

optional sections

• intro to python
• intro to deep learning

sundog-education.com 8

what is a
recommender system

sundog-education.com 9

what it is not

A recommender system is NOT a system that “recommends” arbitrary values.

That describes machine learning in general.

sundog-education.com 10

for example

A system that “recommends” prices for a house you’re
selling is NOT a recommender system.

A system that “recommends” whether a transaction is
fraudulent is NOT a recommender system.

These are general machine learning problems, where
you’d apply techniques such as
Regression, deep learning, XGBoost, or other
techniques.

If that’s what you’re looking for, you want a more
general machine learning course.

sundog-education.com 11

what it is

A system that predicts ratings or preferences a user might give to an item

Often these are sorted and presented as “top-N” recommendations

Also known as recommender engines, recommendation systems, recommendation platforms.

sundog-education.com 12

this is a recommender engine

sundog-education.com 13

many flavors of
recommenders

sundog-education.com 14

recommending
things

sundog-education.com 15

recommending
content

sundog-education.com 16

recommending
music

sundog-education.com 17

recommending
people

sundog-education.com 18

recommending
search results

sundog-education.com 19

understanding you

sundog-education.com 20

understanding
you… explicitly

sundog-education.com 21

understanding
you… implicitly

things you
purchase

things you
click on

things you
consume

sundog-education.com 22

top-N
recommenders

sundog-education.com 23

(one) anatomy of a
top-N recommender

individual
interests

item
similarities

candidate
generation

candidate
ranking

filtering

sundog-education.com 24

another way to do it

rating
predictions

candidate
generation

candidate
ranking

filtering

sundog-education.com 25

quiz time

sundog-education.com 2601

which of the
following are
examples of

implicit ratings?

• star reviews
• purchase data
• video viewing data
• click data

sundog-education.com 2701

which of the
following are
examples of

implicit ratings?

• star reviews
• purchase data
• video viewing data
• click data

sundog-education.com 2802

which are examples of
recommender systems?

• netflix’s home page
• google search
• amazon’s “people who bought also bought…”
• pandora
• online radio stations
• youtube
• wikipedia search

sundog-education.com 2902

which are examples of
recommender systems?

• netflix’s home page
• google search
• amazon’s “people who bought also bought…”
• pandora
• online radio stations
• youtube
• wikipedia search

sundog-education.com 30

03

which are examples of “Top-N”
recommenders?

• netflix recommendation widgets
• google search
• amazon “people who bought also bought”

sundog-education.com 31

03

which are examples of “Top-N”
recommenders?

• netflix recommendation widgets
• google search
• amazon “people who bought also bought”

sundog-education.com 32

04

which are components of
a top-N recommender?

• candidate generation
• filtering

• candidate shuffling
• ranking

sundog-education.com 33

04

which are components of
a top-N recommender?

• candidate generation
• filtering

• candidate shuffling
• ranking

sundog-education.com 34

intro to
python

sundog-education.com 35

code walkthrough

sundog-education.com 36

evaluating
recommender

systems

sundog-education.com 37

train/test

full data set (movie ratings, etc.)

training set test set

machine
learning

predictions

measure
accuracy

sundog-education.com 38

k-fold cross-
validation

full data set (movie ratings, etc.)

fold 1 fold 2 fold k-1 test set…

machine
learning

machine
learning

machine
learning

measure
accuracy

measure
accuracy

measure
accuracy

take average

sundog-education.com 39

measuring
accuracy

sundog-education.com 40

mean absolute
error (MAE)

∑𝑖𝑖=1𝑛𝑛 𝑦𝑦𝑖𝑖 − 𝑥𝑥𝑖𝑖
𝑛𝑛

predicted rating
5
4
5
1

actual rating
3
1
4
1

error
2
3
1
0

MAE = (2+3+1+0)/4 = 1.5

sundog-education.com 41

root mean square
error (RMSE)

∑𝑖𝑖=1𝑛𝑛 𝑦𝑦𝑖𝑖 − 𝑥𝑥𝑖𝑖 2

𝑛𝑛

predicted rating
5
4
5
1

actual rating
3
1
4
1

𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝟐𝟐
4
9
1
0

RMSE= (4 + 9 + 1 + 0)/4 = 1.87

sundog-education.com 42

how did we get
here?

sundog-education.com 43

evaluating top-n
recommenders

hit rate
ℎ𝑖𝑖𝑖𝑖𝑖𝑖
𝑢𝑢𝑖𝑖𝑢𝑢𝑢𝑢𝑖𝑖

sundog-education.com 44

leave-one-out cross
validation

sundog-education.com 45

average reciprocal
hit rate (ARHR)

∑𝑖𝑖=1𝑛𝑛 1
𝑢𝑢𝑟𝑟𝑛𝑛𝑟𝑟𝑖𝑖

𝑈𝑈𝑖𝑖𝑢𝑢𝑢𝑢𝑖𝑖

rank

3
2
1

reciprocal rank

1/3
1/2
1

sundog-education.com 46

cumulative hit rate
(cHR)

hit rank
4
2
1

10

predicted (or actual) rating
5.0
3.0
5.0
2.0

sundog-education.com 47

rating hit rate (rHR)

rating
5.0
4.0
3.0
2.0
1.0

hit rate
0.001
0.004
0.030
0.001

0.0005

sundog-education.com 48

coverage

% of <user, item> pairs that can be predicted

sundog-education.com 49

diversity

(1 – S)
S = avg similarity between recommendation pairs

sundog-education.com 50

novelty

mean popularity rank of recommended items

sundog-education.com 51

the long tail

sundog-education.com 52

churn

how often do
recommendations change?

sundog-education.com 53

responsiveness

how quickly does new
user behavior influence
your recommendations?

sundog-education.com 54

what’s important?

sundog-education.com 55

online A/B tests!

sundog-education.com 56

perceived quality

sundog-education.com 57

quiz time

sundog-education.com 5801

which metric was
used to evaluate
the netflix prize?

sundog-education.com 5901

which metric was
used to evaluate
the netflix prize?

root mean squared error (RMSE)

sundog-education.com 6002

what’s a metric for top-n
recommenders that
accounts for the rank of
predicted items?

sundog-education.com 6102

what’s a metric for top-n
recommenders that
accounts for the rank of
predicted items?

average reciprocal hit rank

sundog-education.com 62

03

which metric measures how popular or
obscure your recommendations are?

sundog-education.com 63

03

which metric measures how popular or
obscure your recommendations are?

novelty

sundog-education.com 64

04

which metric would tell us if we’re recommending
the same types of things all the time?

sundog-education.com 65

04
diversity

which metric would tell us if we’re recommending
the same types of things all the time?

sundog-education.com 6605

which metric
matters more

than anything?

sundog-education.com 6705

which metric
matters more

than anything?

the results of online a/b tests

sundog-education.com 68

code walkthrough

sundog-education.com 69

code walkthrough

sundog-education.com 70

code walkthrough

sundog-education.com 71

building a
recommender engine

sundog-education.com 72

surpriselib algorithm
base class

AlgoBase

SVD KNNBasic SVDpp Custom

sundog-education.com 73

creating a custom
algorithm

class MyOwnAlgorithm(AlgoBase):

 def __init__(self):
 AlgoBase.__init__(self)

 def estimate(self, user, item):
 return 3

implement an estimate function

sundog-education.com 74

building on top of
surpriselib

EvaluatedAlgorithm(AlgoBase)

algorithm: AlgoBase
Evaluate(EvaluationData)

EvaluationData(Dataset)

GetTrainSet()
GetTestSet()
…

RecommenderMetrics

sundog-education.com 75

algorithm bake-offs

Evaluator(DataSet)

AddAlgorithm(algorithm)
Evaluate()

dataset: EvaluatedDataSet
algorithms: EvaluatedAlgorithm[]

sundog-education.com 76

it’s just this easy
Load up common data set for the recommender algorithms
(evaluationData, rankings) = LoadMovieLensData()

Construct an Evaluator to, you know, evaluate them
evaluator = Evaluator(evaluationData, rankings)

Throw in an SVD recommender
SVDAlgorithm = SVD(random_state=10)
evaluator.AddAlgorithm(SVDAlgorithm, "SVD")

Just make random recommendations
Random = NormalPredictor()
evaluator.AddAlgorithm(Random, "Random")

Fight!
evaluator.Evaluate(True)

sundog-education.com 77

let’s jump in

sundog-education.com 78

code walkthrough

sundog-education.com 79

content-based
filtering

sundog-education.com 80

examples of movie
attributes

sundog-education.com 81

movielens genre
data

movieId title genres

1Toy Story (1995) Adventure|Animation|Children|Comedy|Fantasy
2Jumanji (1995) Adventure|Children|Fantasy
3Grumpier Old Men (1995) Comedy|Romance
4Waiting to Exhale (1995) Comedy|Drama|Romance
5Father of the Bride Part II (1995) Comedy

Action* Adventure* Animation* Children's* Comedy*
Crime* Documentary* Drama* Fantasy* Film-Noir* Horror*
Musical* Mystery* Romance* Sci-Fi* Thriller* War*
Western

sundog-education.com 82

cosine similarity

comedy

adventure

𝜃𝜃

sundog-education.com 83

multi-dimensional
space!

sundog-education.com 84

convert genres to
dimensions

Movie action adventure animation children's comedy crime documentary drama fantasy film-noir horror musical western mystery romance sci-fi thriller war western2

Toy Story 0 1 1 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0

Jumanji 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

Grumpier Old Men 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0

Waiting to Exhale 0 0 0 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0

Father of the Bride 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0title genres
1Toy Story (1995) Adventure|Animation|Children|Comedy|Fantasy
2Jumanji (1995) Adventure|Children|Fantasy
3Grumpier Old Men (1995) Comedy|Romance
4Waiting to Exhale (1995) Comedy|Drama|Romance

sundog-education.com 85

multi-dimensional
cosines

𝐶𝐶𝐶𝐶𝑖𝑖𝐶𝐶𝑖𝑖𝐶𝐶 𝑥𝑥,𝑦𝑦 =
∑𝑖𝑖 𝑥𝑥𝑖𝑖𝑦𝑦𝑖𝑖

∑𝑖𝑖 𝑥𝑥𝑖𝑖2 ∑𝑖𝑖 𝑦𝑦𝑖𝑖2

sundog-education.com 86

turning it into code

def computeGenreSimilarity(self, movie1, movie2, genres):
 genres1 = genres[movie1]
 genres2 = genres[movie2]
 sumxx, sumxy, sumyy = 0, 0, 0
 for i in range(len(genres1)):
 x = genres1[i]
 y = genres2[i]
 sumxx += x * x
 sumyy += y * y
 sumxy += x * y

 return sumxy/math.sqrt(sumxx*sumyy)

𝐶𝐶𝐶𝐶𝑖𝑖𝐶𝐶𝑖𝑖𝐶𝐶 𝑥𝑥,𝑦𝑦 =
∑𝑖𝑖 𝑥𝑥𝑖𝑖𝑦𝑦𝑖𝑖

∑𝑖𝑖 𝑥𝑥𝑖𝑖2 ∑𝑖𝑖 𝑦𝑦𝑖𝑖2

sundog-education.com 87

release years

Toy Story (1995)
Jumanji (1995)
Grumpier Old Men (1995)
Waiting to Exhale (1995)
Father of the Bride Part II (1995)
Heat (1995)
Sabrina (1995)

sundog-education.com 88

time similarity

def computeYearSimilarity(self, movie1, movie2, years):
 diff = abs(years[movie1] - years[movie2])
 sim = math.exp(-diff / 10.0)
 return sim

sundog-education.com 89

k-nearest-neighbors

Similarity scores
between this
movie and all

others the user
rated

Top 40
nearest
movies

Sort Weighted
average

Rating
prediction

sundog-education.com 90

knn code

Build up similarity scores between this item and everything the user rated
 neighbors = []
 for rating in self.trainset.ur[u]:
 genreSimilarity = self.similarities[i,rating[0]]
 neighbors.append((genreSimilarity, rating[1]))

 # Extract the top-K most-similar ratings
 k_neighbors = heapq.nlargest(self.k, neighbors, key=lambda t: t[0])

 # Compute average sim score of K neighbors weighted by user ratings
 simTotal = weightedSum = 0
 for (simScore, rating) in k_neighbors:
 if (simScore > 0):
 simTotal += simScore
 weightedSum += simScore * rating

 if (simTotal == 0):
 raise PredictionImpossible('No neighbors')

 predictedRating = weightedSum / simTotal

 return predictedRating

sundog-education.com 91

let’s dive in

sundog-education.com 92

code walkthrough

sundog-education.com 93

implicit ratings

sundog-education.com 94

a note about
implicit ratings.

the algorithms we cover work just as well with
implicit ratings as explicit ratings.

implicit ratings would be things like clicking on
a link, purchasing something – doing
something that is an implicit indication of
interest instead of an explicit rating.

sundog-education.com 95

implicit data can be
powerful

it tends to be plentiful

implicit purchase ratings can be higher quality than explicit ratings

sundog-education.com 96

using implicit data

just model a click / purchase / whatever as a positive rating of some
arbitrary (yet consistent) value.

do NOT model the absence of a click / purchase as a negative rating –
it’s just missing data.

the math generally works out the same.

sundog-education.com 97

not all implicit ratings are
created equal.

purchases good.

clicks not so much.

sundog-education.com 98

bleeding edge alert!

sundog-education.com 99

mise en scène

sundog-education.com 100

mise en scène data
Column # Column Name Description

1 ML_ID MovieLens movie ID

2 f1 Average shot length

3 f2 Mean of color variance
across the key Frames

4 f3 Standard deviation of
color variance across the
key Frames

5 f4 Mean of motion average
across all the frames

6 f5 Mean of motion standard
deviation across all the
frames

7 f6 Mean of lighting key
across the key frames

8 f7 Number of shots

sundog-education.com 101

code walkthrough

sundog-education.com 102

credits

Yashar Deldjoo, Mehdi Elahi, Paolo Cremonesi “Using
Visual Features and Latent Factors for Movie
Recommendation”, ACM RecSys Workshop on New Trends
in Content-based Recommender Systems (CBRecSys),
ACM RecSys 2016, Massachusetts Institute of Technology
(MIT), September 15-19, 2016

http://recsys.deib.polimi.it/?page_id=353

sundog-education.com 103

exercise

which content attribute
is most powerful in
producing “good”
recommendations?

genre, release year, or
mise en scene?

sundog-education.com 104

my results

genre
RMSE: 0.9552

Black Mask (Hak hap) (1996)
Joy Ride (2001)
What's Up, Tiger Lily? (1966) Missing,
The (2003)
City of God (Cidade de Deus) (2002)
24: Redemption (2008)
The Hateful Eight (2015)
Wyatt Earp (1994)
True Grit (2010)
Shooter, The (1997)

mise en scene
RMSE: 1.0663

Pain & Gain (2013)
Bring It On (2000)
Young Master, The (Shi di chu ma)
(1980)
Celebrity (1998)
Yi Yi (2000)
Eating Raoul (1982)
Stuck on You (2003)
Cat Returns, The (Neko no ongaeshi)
(2002)
Reckless (1984)
Sunless (Sans Soleil) (1983)

year
RMSE: 0.9626

Clerks (1994)
Disclosure (1994)
Ed Wood (1994)
Houseguest (1994)
Legends of the Fall (1994)
Madness of King George, The (1994)
Mary Shelley's Frankenstein
(Frankenstein) (1994)
Quiz Show (1994)
Secret of Roan Inish, The (1994)
Shallow Grave (1994)

sundog-education.com 105

better year-based
recs

In Evaluator.py’s SampleTopNRecs:

print ("\nWe recommend:")
 for userID, movieID, actualRating, estimatedRating, _ in predictions:
 intMovieID = int(movieID)
 recommendations.append((intMovieID, estimatedRating, ml.getPopularityRanks()[intMovieID]))

 recommendations.sort(key=lambda x: x[2])
 recommendations.sort(key=lambda x: x[1], reverse=True)

We recommend:
Clerks (1994) 3.37112480076
Quiz Show (1994) 3.37112480076
Ed Wood (1994) 3.37112480076
Legends of the Fall (1994) 3.37112480076
Crow, The (1994) 3.37112480076
Hoop Dreams (1994) 3.37112480076
Muriel's Wedding (1994) 3.37112480076
Disclosure (1994) 3.37112480076
Adventures of Priscilla, Queen of the Desert, The (1994) 3.37112480076
River Wild, The (1994) 3.37112480076

sundog-education.com 106

neighborhood-
based

collaborative
filtering

sundog-education.com 107

(one) anatomy of a
top-N recommender

individual
interests

item
similarities

candidate
generation

candidate
ranking

filtering

sundog-education.com 108

ways to measure similarity

sundog-education.com 109

cosine similarity

𝐶𝐶𝐶𝐶𝑖𝑖𝐶𝐶𝑖𝑖𝐶𝐶 𝑥𝑥,𝑦𝑦 =
∑𝑖𝑖 𝑥𝑥𝑖𝑖𝑦𝑦𝑖𝑖

∑𝑖𝑖 𝑥𝑥𝑖𝑖2 ∑𝑖𝑖 𝑦𝑦𝑖𝑖2

sundog-education.com 110

sparsity

Indiana Jones Star Wars Shape of Water Incredibles Casablanca
Bob 4
Ted
Alice 5

sundog-education.com 111

adjusted cosine

𝐶𝐶𝐶𝐶𝑖𝑖𝐶𝐶𝑖𝑖𝐶𝐶 𝑥𝑥,𝑦𝑦 =
∑𝑖𝑖 𝑥𝑥𝑖𝑖 − �̅�𝑥 𝑦𝑦𝑖𝑖 − �𝑦𝑦
∑𝑖𝑖 𝑥𝑥𝑖𝑖 − �̅�𝑥 2 ∑𝑖𝑖 𝑦𝑦𝑖𝑖 − �𝑦𝑦 2

sundog-education.com 112

(item-based) pearson similarity

𝐶𝐶𝐶𝐶𝑖𝑖𝐶𝐶𝑖𝑖𝐶𝐶 𝑥𝑥,𝑦𝑦 =
∑𝑖𝑖 𝑥𝑥𝑖𝑖 − ̅𝚤𝚤 𝑦𝑦𝑖𝑖 − ̅𝚤𝚤
∑𝑖𝑖 𝑥𝑥𝑖𝑖 − ̅𝚤𝚤 2 ∑𝑖𝑖 𝑦𝑦𝑖𝑖 − ̅𝚤𝚤 2

sundog-education.com 113

spearman rank correlation

pearson similarity based on ranks, not ratings

sundog-education.com 114

mean squared difference

𝑀𝑀𝐶𝐶𝑀𝑀 𝑥𝑥,𝑦𝑦 =
∑𝑖𝑖∈𝐼𝐼𝑥𝑥𝑥𝑥 𝑥𝑥𝑖𝑖 − 𝑦𝑦𝑖𝑖 2

𝐼𝐼𝑥𝑥𝑥𝑥

𝑀𝑀𝐶𝐶𝑀𝑀𝑖𝑖𝑖𝑖𝐶𝐶 𝑥𝑥,𝑦𝑦 =
1

𝑀𝑀𝐶𝐶𝑀𝑀 𝑥𝑥,𝑦𝑦 + 1

sundog-education.com 115

jaccard similarity

sundog-education.com 116

recap

cosine

adjusted cosine

pearson

spearman

msd

jaccard

sundog-education.com 117

user-based
collaborative

filtering

sundog-education.com 118

user-based
collaborative filtering

sundog-education.com 119

user-based collaborative
filtering

sundog-education.com 120

user-based
collaborative filtering

Indiana Jones Star Wars Empire Strikes Back Incredibles Casablanca
Bob 4 5
Ted 1
Ann 5 5 5

sundog-education.com 121

user-based
collaborative filtering

Bob Ted Ann
Bob 1 0 1
Ted 0 1 0
Ann 1 0 1

Indiana Jones Star Wars Empire Strikes Back Incredibles Casablanca
Bob 4 5
Ted 1
Ann 5 5 5

sundog-education.com 122

user-based
collaborative filtering

Bob Ted Ann
Bob 1 0 1
Ted 0 1 0
Ann 1 0 1

Bob’s neighbors: Ann: 1.0, Ted: 0

sundog-education.com 123

candidate
generation

sundog-education.com 124

candidate scoring

1.0 1.0 1.0

sundog-education.com 125

candidate sorting

1.0 1.0

sundog-education.com 126

candidate filtering

1.0 1.0

X

sundog-education.com 127

user-based collaborative
filtering

• user -> item rating matrix
• user -> user similarity matrix
• look up similar users
• candidate generation
• candidate scoring
• candidate filtering

sundog-education.com 128

code walkthrough

sundog-education.com 129

item-based
collaborative

filtering

sundog-education.com 130

things, not people

sundog-education.com 131

item-based collaborative
filtering

Bob Ted Ann
Indiana Jones 4
Star Wars 5 5
Empire Strikes Back 5
Incredibles 5
Casablanca 1

sundog-education.com 132

item-based collaborative
filtering

Indiana Jones Star Wars Empire Strikes Back Incredibles Casablanca
Indiana Jones 1 1 0 0 0
Star Wars 1 1 1 1 0
Empire Strikes Back 1 1 1 1 0
Incredibles 1 1 1 1 0
Casablanca 0 0 0 0 1

sundog-education.com 133

item-based collaborative
filtering

sundog-education.com 134

code walkthrough

sundog-education.com 135

exercise

Build recommendation candidates from items above a
certain rating or similarity threshold, instead of the top
10.

sundog-education.com 136

exercise solution:
item-based

#kNeighbors = heapq.nlargest(k, testUserRatings, key=lambda t: t[1])
kNeighbors = []
for rating in testUserRatings:
 if rating[1] > 4.0:
 kNeighbors.append(rating)

after
Kiss of Death (1995)
Amos & Andrew (1993)
Edge of Seventeen (1998)
Get Real (1998)
Grace of My Heart (1996)
Relax... It's Just Sex (1998)
My Crazy Life (Mi vida loca) (1993)
Set It Off (1996)
Bean (1997)
Joe's Apartment (1996)
Lost & Found (1999)

before
James Dean Story, The (1957)
Get Real (1998)
Kiss of Death (1995)
Set It Off (1996)
How Green Was My Valley (1941)
Amos & Andrew (1993)
My Crazy Life (Mi vida loca) (1993)
Grace of My Heart (1996)
Fanny and Alexander (Fanny och Alexander) (1982)
Wild Reeds (Les roseaux sauvages) (1994)
Edge of Seventeen (1998)

sundog-education.com 137

exercise solution:
user-based

#kNeighbors = heapq.nlargest(k, similarUsers, key=lambda t: t[1])
kNeighbors = []
for rating in similarUsers:
 if rating[1] > 0.95:
 kNeighbors.append(rating)

after
Star Wars: Episode IV - A New Hope (1977)
Matrix, The (1999)
Star Wars: Episode V - The Empire Strikes Back (1980)
Fight Club (1999)
Back to the Future (1985)
Raiders of the Lost Ark (1981)
American Beauty (1999)
Toy Story (1995)
Godfather, The (1972)
Star Wars: Episode VI - Return of the Jedi (1983)
Lord of the Rings: The Fellowship of the Ring, The (2001)

before
Inception (2010)
Star Wars: Episode V - The Empire Strikes Back (1980)
Bourne Identity, The (1988)
Crouching Tiger, Hidden Dragon (Wo hu cang long) (2000)
Dark Knight, The (2008)
Good, the Bad and the Ugly, The (Buono, il brutto, il cattivo, Il) (1966)
Departed, The (2006)
Dark Knight Rises, The (2012)
Back to the Future (1985)
Gravity (2013)
Fight Club (1999)

sundog-education.com 138

evaluating collaborative
filtering

sundog-education.com 139

exercise

measure the hit-rate of item-based collaborative filtering.

sundog-education.com 140

exercise solution

sim_options = {'name': 'cosine',
 'user_based': False
 }

for uiid in range(trainSet.n_users):

 userRatings = trainSet.ur[uiid]
 kNeighbors = heapq.nlargest(k, userRatings, key=lambda t: t[1])

 candidates = defaultdict(float)
 for itemID, rating in kNeighbors:
 similarityRow = simsMatrix[itemID]
 for innerID, score in enumerate(similarityRow):
 candidates[innerID] += score * (rating / 5.0)

 # Build a dictionary of stuff the user has already seen

sundog-education.com 141

k-nearest-
neighbors (knn)
recommenders

sundog-education.com 142

another way to do it

rating
predictions

candidate
generation

candidate
ranking

filtering

sundog-education.com 143

user-based KNN

for user u and item i…

find the k most-
similar users who

rated this item

compute mean sim
score weighted by

ratings

rating prediction

sundog-education.com 144

user-based knn

�̂�𝑢𝑢𝑢𝑖𝑖 =
∑𝑣𝑣∈𝑁𝑁𝑖𝑖𝑘𝑘(𝑢𝑢) 𝑖𝑖𝑖𝑖𝐶𝐶(𝑢𝑢, 𝑣𝑣) � 𝑢𝑢𝑣𝑣𝑖𝑖
∑
𝑣𝑣∈𝑁𝑁𝑖𝑖

𝑘𝑘(𝑢𝑢) 𝑖𝑖𝑖𝑖𝐶𝐶(𝑢𝑢, 𝑣𝑣)

sundog-education.com 145

item-based KNN

for user u and item i…

find the k most-
similar items also
rated by this user

compute mean sim
score weighted by

ratings

rating prediction

sundog-education.com 146

user-based knn

�̂�𝑢𝑢𝑢𝑖𝑖 =
∑𝑗𝑗∈𝑁𝑁𝑢𝑢𝑘𝑘(𝑖𝑖) 𝑖𝑖𝑖𝑖𝐶𝐶(𝑖𝑖, 𝑗𝑗) � 𝑢𝑢𝑢𝑢𝑗𝑗
∑𝑗𝑗∈𝑁𝑁𝑢𝑢𝑘𝑘(𝑗𝑗) 𝑖𝑖𝑖𝑖𝐶𝐶(𝑖𝑖, 𝑗𝑗)

sundog-education.com 147

code walkthrough

sundog-education.com 148

exercise

try out different similarity metrics: cosine, msd, and pearson.

sundog-education.com 149

exercise results:
user-based

cosine
RMSE: 0.9961

One Magic Christmas (1985)
Step Into Liquid (2002)
Art of War, The (2000)
Taste of Cherry (1997)
King Is Alive, The (2000)
Innocence (2000)
Maelstrom (2000)
Faust (1926)
Seconds (1966)
Amazing Grace (2006)

pearson
RMSE: 1.0016

Othello (1995)
Step Into Liquid (2002)
Dreamscape (1984)
Taste of Cherry (1997)
King Is Alive, The (2000)
Innocence (2000)
Maelstrom (2000)
Last Seduction, The (1994)
Amazing Grace (2006)
Unvanquished, The (1957)

msd
RMSE: 0.9713

One Magic Christmas (1985)
Step Into Liquid (2002)
Art of War, The (2000)
Taste of Cherry (1997)
King Is Alive, The (2000)
Innocence (2000)
Maelstrom (2000)
Faust (1926)
Seconds (1966)
Amazing Grace (2006)

sundog-education.com 150

exercise results:
item-based

cosine
RMSE: 0.9995

Life in a Day (2011)
Under Suspicion (2000)
Asterix and the Gauls (1967)
Find Me Guilty (2006)
Elementary Particles, The (2006)
Asterix and the Vikings (2006)
From the Sky Down (2011)
Vive L'Amour (1994)
Vagabond (1985)
Ariel (1988)

pearson
RMSE: 0.9928

Hearts and Minds (1996)
Pokemon the Movie 2000 (2000)
Eureka (2000)
Silent Running (1972)
It Might Get Loud (2008)
Dinner Rush (2000)
Brainstorm (1983)
Europa (Zentropa) (1991)
Gerry (2002)
Soul Kitchen (2009)

msd
RMSE: 0.9424

Life in a Day (2011)
Under Suspicion (2000)
Asterix and the Gauls (1967)
Find Me Guilty (2006)
Elementary Particles (2006)
Asterix and the Vikings (2006)
From the Sky Down (2011)
Vive L'Amour (1994)
Vagabond (1985)
Ariel (1988)

sundog-education.com 151

more experiments

KNNWithZScore
RMSE: 0.9347

One Magic Christmas (1985)
Taste of Cherry (1997)
King Is Alive, The (2000)
Innocence (2000)
MaelstrÃ¶m (2000)
Amazing Grace (2006)
Unvanquished, The (1957)
Undertow (2004)
Big Town, The (1987)
Masquerade (1988)

KNNBaseline
RMSE: 0.9129

Digimon: The Movie (2000)
Pokemon 3: The Movie (2001)
City of Industry (1997) Amityville
Curse, The (1990)
Grand, The (2007)
Tracey Fragments, The (2007)
T-Rex: Back to the Cretaceous (1998)
Above the Law (1988)
Enforcer, The (1976)
Kirikou and the Sorceress (1998)

KNNWithMeans
RMSE: 0.9306

One Magic Christmas (1985)
Taste of Cherry (1997)
King Is Alive, The (2000)
Innocence (2000)
Maelstrom (2000)
Amazing Grace (2006)
Unvanquished, The (1957)
Undertow (2004)
Soul Kitchen (2009)
Big Town, The (1987)

sundog-education.com 152

why is knn so bad?

sundog-education.com 153

bleeding edge alert!

sundog-education.com 154

translation-based
recommendations

sundog-education.com 155

translation-based
recommendations

https://sites.google.com/view/ruining-he/

https://sites.google.com/view/ruining-he/

sundog-education.com 156

translation-based
recommendations

sundog-education.com 157

translation-based
recommendations

sundog-education.com 158

model-based
methods

sundog-education.com 159

matrix
factorization

sundog-education.com 160

the problem

Indiana Jones Star Wars Empire Strikes Back Incredibles Casablanca
Bob 4 5 ? ? ?
Ted ? ? ? ? 1
Ann ? 5 5 5 ?

sundog-education.com 161

principal component
analysis

sundog-education.com 162

eigenvectors are
principal components

sundog-education.com 163

pca on movie
ratings

Indiana Jones Star Wars Empire Strikes Back Incredibles Casablanca
Bob 4 5 5 4 4
Ted 3 3 3 5 4
Ann 4 5 5 5 2

"Action" "Sci-Fi" "Classic"
Bob 0.3 0.5 0.2
Ted 0.1 0.1 0.8
Ann 0.3 0.6 0.1

P
C
A

𝑈𝑈

𝑅𝑅

sundog-education.com 164

pca on movie
ratings

Bob Ted Ann
Indiana Jones 4 3 4
Star Wars 5 3 5
Empire Strikes Back 5 3 5
Incredibles 4 5 5
Casablanca 4 4 2

P
C
A

"Action" "Sci-Fi" "Classic"
Indiana Jones 0.6 0.3 0.1
Star Wars 0.4 0.6 0
Empire Strikes Back 0.4 0.6 0
Incredibles 0.8 0.2 0
Casablanca 0.2 0 0.8

𝑅𝑅𝑇𝑇

𝑀𝑀

sundog-education.com 165

matrix factorization

𝑅𝑅 = 𝑈𝑈Σ𝑀𝑀𝑇𝑇

singular value decomposition (svd)

sundog-education.com 166

but wait

Indiana Jones Star Wars Empire Strikes Back Incredibles Casablanca
Bob 4 5 ? ? ?
Ted ? ? ? ? 1
Ann ? 5 5 5 ?

𝑅𝑅 = 𝑈𝑈Σ𝑀𝑀𝑇𝑇

𝑅𝑅𝐵𝐵𝐵𝐵𝐵𝐵,𝐸𝐸𝐸𝐸𝐸𝐸𝑖𝑖𝐸𝐸𝐸𝐸 𝑆𝑆𝑆𝑆𝐸𝐸𝑖𝑖𝑆𝑆𝐸𝐸𝑆𝑆 𝐵𝐵𝐵𝐵𝐵𝐵𝑆𝑆 = 𝑈𝑈𝐵𝐵𝐵𝐵𝐵𝐵 � 𝑀𝑀𝐸𝐸𝐸𝐸𝐸𝐸𝑖𝑖𝐸𝐸𝐸𝐸 𝑆𝑆𝑆𝑆𝐸𝐸𝑖𝑖𝑆𝑆𝐸𝐸𝑆𝑆 𝐵𝐵𝐵𝐵𝐵𝐵𝑆𝑆
𝑇𝑇

stochastic gradient descent (sgd)

sundog-education.com 167

enough talk

sundog-education.com 168

code walkthrough

sundog-education.com 169

a matrix factorization bestiary

Non-Negative Matrix Factorization (NMF)

Probabilistic Matrix Factorization (PMF)

Probabilistic Latent Semantic Analysis (PLSA)

PureSVD

UV Decomposition

Weighted Regularized Matrix Factorization (WRMF)

SVD++

timeSVD++

HOSVD

CUR

Factorization Machines

Factorized Personalized Markov Chains

sundog-education.com 170

tuning svd

print("Searching for best parameters...")
param_grid = {'n_epochs': [20, 30], 'lr_all': [0.005, 0.010],
 'n_factors': [50, 100]}
gs = GridSearchCV(SVD, param_grid, measures=['rmse', 'mae'], cv=3)

gs.fit(evaluationData)

best RMSE score
print("Best RMSE score attained: ", gs.best_score['rmse'])

params = gs.best_params['rmse']
SVDtuned = SVD(n_epochs = params['n_epochs'], lr_all = params['lr_all'], n_factors
= params['n_factors'])

sundog-education.com 171

exercise

tune the hyperparameters for SVD with the MovieLens data set.

sundog-education.com 172

svd tuning results
{'n_epochs': 20, 'lr_all': 0.005, 'n_factors': 50}

Untuned
RMSE: 0.9033

Sixth Sense, The (1999)
Casablanca (1942)
Hamlet (1996)
Monty Python and the Holy Grail (1975)
When We Were Kings (1996)
It Happened One Night (1934)
Bridge on the River Kwai, The (1957)
Smoke (1995)
Big Night (1996)
Seven Samurai (1954)

Tuned
RMSE: 0.9002

Lord of the Rings: The Return of the King, The (2003)
Modern Times (1936)
Lord of the Rings: The Two Towers, The (2002)
Lord of the Rings: The Fellowship of the Ring, The (2001)
Sunset Blvd. (a.k.a. Sunset Boulevard) (1950)
Lawrence of Arabia (1962)
Departed, The (2006)
Raging Bull (1980)
Matrix, The (1999)
Singin' in the Rain (1952)

sundog-education.com 173

bleeding edge alert!

sundog-education.com 174

sparse linear
methods (SLIM)

sundog-education.com 175

SLIM results

sundog-education.com 176

how SLIM works

�𝑟𝑟𝑖𝑖𝑗𝑗 = 𝑟𝑟𝑖𝑖𝑇𝑇𝑤𝑤𝑗𝑗

�̃�𝐴 = 𝐴𝐴𝐴𝐴

sundog-education.com 177

recommendations
with deep learning

sundog-education.com 178

intro to deep
learning

sundog-education.com 179

deep learning pre-
requisites

sundog-education.com 180

gradient descent

sundog-education.com 181

autodiff

• Gradient descent requires knowledge of, well, the gradient from
your cost function (MSE)

• Mathematically we need the first partial derivatives of all the inputs
• This is hard and inefficient if you just throw calculus at the problem

• Reverse-mode autodiff to the rescue!
• Optimized for many inputs + few outputs (like a neuron)
• Computes all partial derivatives in # of outputs + 1 graph traversals
• Still fundamentally a calculus trick – it’s complicated but it works
• This is what Tensorflow uses

sundog-education.com 182

softmax

• Used for classification
• Given a score for each class
• It produces a probability of each class
• The class with the highest probability is the “answer” you get

x is a vector of input values
theta is a vector of weights

sundog-education.com 183

in review

• Gradient descent is an algorithm for minimizing error over multiple
steps

• Autodiff is a calculus trick for finding the gradients in gradient
descent

• Softmax is a function for choosing the most probable
classification given several input values

sundog-education.com 184

introducing
artificial neural

networks

sundog-education.com 185

the biological
inspiration

• Neurons in your cerebral cortex are
connected via axons

• A neuron “fires” to the neurons it’s
connected to, when enough of its
input signals are activated.

• Very simple at the individual neuron
level – but layers of neurons
connected in this way can yield
learning behavior.

• Billions of neurons, each with
thousands of connections, yields a
mind

sundog-education.com 186

cortical columns

• Neurons in your cortex seem to be
arranged into many stacks, or
“columns” that process information in
parallel

• “mini-columns” of around 100 neurons
are organized into larger “hyper-
columns”. There are 100 million mini-
columns in your cortex

• This is coincidentally similar to how
GPU’s work…

(credit: Marcel Oberlaender et al.)

sundog-education.com 187

the first artificial
neurons
• 1943!!

A B

C An artificial neuron “fires” if more than N
input connections are active.

Depending on the number of connections
from each input neuron, and whether a
connection activates or suppresses a
neuron, you can construct AND, OR, and
NOT logical constructs this way.

This example would implement C = A OR B if the threshold is 2 inputs being active.

sundog-education.com 188

the linear threshold
unit (ltu)

• 1957!
• Adds weights to the

inputs; output is given by
a step function

Weight
1

Weight
2

Σ

Input 1 Input 2

Sum up the products of
the inputs and their
weights
Output 1 if sum is >= 0

sundog-education.com 189

the perceptron

• A layer of LTU’s
• A perceptron can learn by

reinforcing weights that lead
to correct behavior during
training

• This too has a biological
basis (“cells that fire
together, wire together”)

Σ ΣΣ

Weight
1

Weight
2

Bias
Neuron

(1.0)

Input 1 Input 2

sundog-education.com 190

multi-layer
perceptrons

• Addition of “hidden
layers”

• This is a Deep Neural
Network

• Training them is trickier –
but we’ll talk about that.

Σ ΣΣ

Weight
1

Weight
2

Bias
Neuron

(1.0)

Input 1 Input 2

Σ

Σ ΣΣ

sundog-education.com 191

a modern deep
neural network

• Replace step activation
function with
something better

• Apply softmax to the
output

• Training using gradient
descent

Σ ΣΣ

Weight
1

Weight
2

Bias
Neuron

(1.0)

Input 1 Input 2

Σ

Σ ΣΣ

softmax

Bias
Neuron

(1.0)

sundog-education.com 192

let’s play

sundog-education.com 193

deep learning

sundog-education.com 194

backpropagation

• How do you train a MLP’s weights? How does it
learn?

• Backpropagation… or more specifically:
Gradient Descent using reverse-mode autodiff!

• For each training step:
• Compute the output error
• Compute how much each neuron in the previous

hidden layer contributed
• Back-propagate that error in a reverse pass
• Tweak weights to reduce the error using gradient

descent

sundog-education.com 195

activation functions
(aka rectifier)

• Step functions don’t work with gradient
descent – there is no gradient!

• Mathematically, they have no useful
derivative.

• Alternatives:
• Logistic function
• Hyperbolic tangent function
• Exponential linear unit (ELU)
• ReLU function (Rectified Linear Unit)

• ReLU is common. Fast to compute and
works well.

• Also: “Leaky ReLU”, “Noisy ReLU”
• ELU can sometimes lead to faster learning

though. ReLU function

sundog-education.com 196

optimization
functions

• There are faster (as in faster learning) optimizers than gradient descent
• Momentum Optimization

• Introduces a momentum term to the descent, so it slows down as things start to flatten and speeds up
as the slope is steep

• Nesterov Accelerated Gradient
• A small tweak on momentum optimization – computes momentum based on the gradient slightly

ahead of you, not where you are
• RMSProp

• Adaptive learning rate to help point toward the minimum
• Adam

• Adaptive moment estimation – momentum + RMSProp combined
• Popular choice today, easy to use

sundog-education.com 197

avoiding overfitting

• With thousands of weights to tune, overfitting is a
problem

• Early stopping (when performance starts dropping)
• Regularization terms added to cost function during

training
• Dropout – ignore say 50% of all neurons randomly

at each training step
• Works surprisingly well!
• Forces your model to spread out its learning

sundog-education.com 198

tuning your
topology

• Trial & error is one way
• Evaluate a smaller network with less neurons

in the hidden layers
• Evaluate a larger network with more layers

• Try reducing the size of each layer as you progress
– form a funnel

• More layers can yield faster learning
• Or just use more layers and neurons than

you need, and don’t care because you use
early stopping.

• Use “model zoos”

sundog-education.com 199

activation
functions

sundog-education.com 200

activation functions

• Define the output of a node / neuron given its input signals

f(x)

Σ

sundog-education.com 201

linear activation
function

• It doesn’t really *do*
anything

• Can’t do backpropagation

By Laughsinthestocks - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=44920411

sundog-education.com 202

binary step function

• It’s on or off
• Can’t handle multiple

classification – it’s
binary after all

• Vertical slopes don’t
work well with calculus!

By Laughsinthestocks - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=44920435

sundog-education.com 203

instead we need non-linear
activation functions

• These can create complex mappings between inputs and
outputs

• Allow backpropagation (because they have a useful derivative)
• Allow for multiple layers (linear functions degenerate to a single

layer)

sundog-education.com 204

Sigmoid / Logistic /
TanH

• Nice & smooth
• Scales everything from 0-1

(Sigmoid / Logistic) or -1 to 1
(tanh / hyperbolic tangent)

• But: changes slowly for high
or low values

• The “Vanishing Gradient”
problem

• Computationally expensive
• Tanh generally preferred over

sigmoid

By Laughsinthestocks - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=44920533

Sigmoid AKA Logistic

TanH AKA Hyperbolic Tangent

sundog-education.com 205

Rectified Linear
Unit (ReLU)

• Now we’re talking
• Very popular choice
• Easy & fast to

compute
• But, when inputs are

zero or negative, we
have a linear function
and all of its
problems

• The “Dying ReLU
problem” By Laughsinthestocks - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=44920600

sundog-education.com 206

Leaky ReLU

• Solves “dying ReLU” by
introducing a negative
slope below 0 (usually not
as steep as this)

sundog-education.com 207

Parametric ReLU
(PReLU)

• ReLU, but the slope in the
negative part is learned
via backpropagation

• Complicated and YMMV

sundog-education.com 208

Other ReLU variants

• Exponential Linear Unit (ELU)
• Swish

• From Google, performs really well
• Mostly a benefit with very deep

networks (40+ layers)
• Maxout

• Outputs the max of the inputs
• Technically ReLU is a special

case of maxout
• But doubles parameters that

need to be trained, not often
practical.

By Ringdongling - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=85402414

sundog-education.com 209

Softmax

• Used on the final output layer of a
multiple classification problem

• Basically converts outputs to
probabilities of each classification

• Can’t produce more than one label for
something (sigmoid can)

• Don’t worry about the actual function
for the exam, just know what it’s used
for.

Σ ΣΣ

softmax

sundog-education.com 210

Choosing an
activation function

• For multiple classification, use softmax on the output layer
• RNN’s do well with Tanh
• For everything else

• Start with ReLU
• If you need to do better, try Leaky ReLU
• Last resort: PReLU, Maxout
• Swish for really deep networks

sundog-education.com 211

tensorflow

sundog-education.com 212

why tensorflow?

• It’s not specifically for neural networks– it’s more generally an
architecture for executing a graph of numerical operations

• Tensorflow can optimize the processing of that graph, and
distribute its processing across a network

• Sounds a lot like Apache Spark, eh?
• It can also distribute work across GPU’s!

• Can handle massive scale – it was made by Google
• Runs on about anything
• Highly efficient C++ code with easy to use Python API’s

sundog-education.com 213

tensorflow basics

• Install with conda install
tensorflow or conda install
tensorflow-gpu

• A tensor is just a fancy name for
an array or matrix of values

• To use Tensorflow, you:
• Construct a graph to compute your

tensors
• Initialize your variables
• Execute that graph – nothing

actually happens until then

import tensorflow as tf

a = tf.Variable(1, name="a")
b = tf.Variable(2, name="b")
f = a + b

tf.print(f)

World’s simplest Tensorflow app:

sundog-education.com 214

creating a neural network
with tensorflow

• Mathematical insights:
• All those interconnected arrows multiplying

weights can be thought of as a big matrix
multiplication

• The bias term can just be added onto the
result of that matrix multiplication

• So in Tensorflow, we can define a layer
of a neural network as:
output =
tf.matmul(previous_layer,
layer_weights) + layer_biases

• By using Tensorflow directly we’re kinda
doing this the “hard way.”

Σ ΣΣ

Weight
1

Weight
2

Bias
Neuron
(1.0)

Input 1 Input 2

Σ

Σ ΣΣ

softmax

Bias
Neur

on
(1.0)

sundog-education.com 215

creating a neural network
with tensorflow
• Load up our training and testing data
• Construct a graph describing our neural network

• Use placeholders for the input data and target labels
• This way we can use the same graph for training and testing!

• Use variables for the learned weights for each connection
and learned biases for each neuron

• Variables are preserved across runs within a Tensorflow
session

• Associate an optimizer (ie gradient descent) to the
network

• Run the optimizer with your training data
• Evaluate your trained network with your testing

data

sundog-education.com 216

make sure your features
are normalized

• Neural networks usually work best if your input data is normalized.
• That is, 0 mean and unit variance
• The real goal is that every input feature is comparable in terms of

magnitude
• scikit_learn’s StandardScaler can do this for you
• Many data sets are normalized to begin with – such as the one

we’re about to use.

sundog-education.com 217

let’s try it out

sundog-education.com 218

keras

sundog-education.com 219

why keras?

• Easy and fast prototyping
• Runs on top of TensorFlow (or

CNTK, or Theano)
• scikit_learn integration
• Less to think about – which often

yields better results without even
trying

• This is really important! The
faster you can experiment, the
better your results.

sundog-education.com 220

let’s dive in

sundog-education.com 221

example: multi-class
classification

• MNIST is an example of multi-class classification.

model = Sequential()

model.add(Dense(64, activation='relu', input_dim=20))
model.add(Dropout(0.5))
model.add(Dense(64, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(10, activation='softmax'))
sgd = SGD(lr=0.01, decay=1e-6, momentum=0.9,

nesterov=True)
model.compile(loss='categorical_crossentropy',

optimizer=sgd, metrics=['accuracy'])

sundog-education.com 222

example: binary
classification

model = Sequential()
model.add(Dense(64, input_dim=20,
activation='relu')) model.add(Dropout(0.5))
model.add(Dense(64, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(1, activation='sigmoid'))
model.compile(loss='binary_crossentropy',
optimizer='rmsprop', metrics=['accuracy'])

sundog-education.com 223

integrating keras
with scikit-learn

from keras.wrappers.scikit_learn import KerasClassifier

def create_model():
 model = Sequential()
 model.add(Dense(6, input_dim=4, kernel_initializer='normal', activation='relu'))
 model.add(Dense(4, kernel_initializer='normal', activation='relu'))
 model.add(Dense(1, kernel_initializer='normal', activation='sigmoid'))
 model.compile(loss='binary_crossentropy', optimizer='rmsprop', metrics=['accuracy'])
 return model

estimator = KerasClassifier(build_fn=create_model, nb_epoch=100, verbose=0)

cv_scores = cross_val_score(estimator, features, labels, cv=10)
print(cv_scores.mean())

sundog-education.com 224

let’s try it out

sundog-education.com 225

convolutional
neural networks

sundog-education.com 226

cnn’s: what are they
for?

• When you have data that doesn’t neatly
align into columns

• Images that you want to find features within
• Machine translation
• Sentence classification
• Sentiment analysis

• They can find features that aren’t in a
specific spot

• Like a stop sign in a picture
• Or words within a sentence

• They are “feature-location invariant”

sundog-education.com 227

cnn’s: how do they
work?

• Inspired by the biology of the visual cortex
• Local receptive fields are groups of neurons that only respond to a part of

what your eyes see (subsampling)
• They overlap each other to cover the entire visual field (convolutions)
• They feed into higher layers that identify increasingly complex images

• Some receptive fields identify horizontal lines, lines at different angles, etc. (filters)
• These would feed into a layer that identifies shapes
• Which might feed into a layer that identifies objects

• For color images, extra layers for red, green, and blue

sundog-education.com 228

how do we “know”
that’s a stop sign?

• Individual local receptive fields scan the
image looking for edges, and pick up the
edges of the stop sign in a layer

• Those edges in turn get picked up by a higher
level convolution that identifies the stop
sign’s shape (and letters, too)

• This shape then gets matched against your
pattern of what a stop sign looks like, also
using the strong red signal coming from your
red layers

• That information keeps getting processed
upward until your foot hits the brake!

• A CNN works the same way

sundog-education.com 229

cnn’s with keras

• Source data must be of appropriate dimensions
• ie width x length x color channels

• Conv2D layer type does the actual convolution on a 2D image
• Conv1D and Conv3D also available – doesn’t have to be image data

• MaxPooling2D layers can be used to reduce a 2D layer down by taking
the maximum value in a given block

• Flatten layers will convert the 2D layer to a 1D layer for passing into a
flat hidden layer of neurons

• Typical usage:
• Conv2D -> MaxPooling2D -> Dropout -> Flatten -> Dense -> Dropout -> Softmax

sundog-education.com 230

cnn’s are hard

• Very resource-intensive (CPU, GPU, and
RAM)

• Lots of hyperparameters
• Kernel sizes, many layers with different

numbers of units, amount of pooling… in
addition to the usual stuff like number of
layers, choice of optimizer

• Getting the training data is often the
hardest part! (As well as storing and
accessing it)

sundog-education.com 231

specialized cnn
architectures

• Defines specific arrangement of layers, padding, and hyperparameters
• LeNet-5

• Good for handwriting recognition

• AlexNet
• Image classification, deeper than LeNet

• GoogLeNet
• Even deeper, but with better performance
• Introduces inception modules (groups of convolution layers)

• ResNet (Residual Network)
• Even deeper – maintains performance via skip connections.

sundog-education.com 232

let’s try it out

sundog-education.com 233

recurrent neural
networks

sundog-education.com 234

rnn’s: what are they
for?

• Time-series data
• When you want to predict future behavior based

on past behavior
• Web logs, sensor logs, stock trades
• Where to drive your self-driving car based on

past trajectories
• Data that consists of sequences of arbitrary

length
• Machine translation
• Image captions
• Machine-generated music

sundog-education.com 235

a recurrent neuron

Σ

sundog-education.com 236

another way to look
at it

Σ Σ Σ

Time

A “Memory Cell”

sundog-education.com 237

a layer of recurrent
neurons

Σ Σ Σ Σ

sundog-education.com 238

rnn topologies

• Sequence to sequence
• i.e., predict stock prices based on

series of historical data
• Sequence to vector

• i.e., words in a sentence to
sentiment

• Vector to sequence
• i.e., create captions from an image

• Encoder -> Decoder
• Sequence -> vector -> sequence
• i.e., machine translation

sundog-education.com 239

training rnn’s

• Backpropagation through time
• Just like backpropagation on MLP’s, but applied to each time step.

• All those time steps add up fast
• Ends up looking like a really, really deep neural network.
• Can limit backpropagation to a limited number of time steps (truncated

backpropagation through time)

sundog-education.com 240

training rnn’s

• State from earlier time steps get diluted
over time

• This can be a problem, for example when
learning sentence structures

• LSTM Cell
• Long Short-Term Memory Cell
• Maintains separate short-term and long-term

states
• GRU Cell

• Gated Recurrent Unit
• Simplified LSTM Cell that performs about as

well

sundog-education.com 241

training rnn’s

• It’s really hard
• Very sensitive to topologies, choice

of hyperparameters
• Very resource intensive
• A wrong choice can lead to a RNN

that doesn’t converge at all.

sundog-education.com 242

let’s run an example

sundog-education.com 243

tuning neural
networks

sundog-education.com 244

Learning Rate

• Neural networks are trained
by gradient descent (or
similar means)

• We start at some random
point, and sample different
solutions (weights) seeking
to minimize some cost
function, over many epochs

• How far apart these samples
are is the learning rate

sundog-education.com 245

Effect of learning
rate

• Too high a learning rate
means you might overshoot
the optimal solution!

• Too small a learning rate will
take too long to find the
optimal solution

• Learning rate is an example
of a hyperparameter

sundog-education.com 246

Batch Size

• How many training samples are
used within each epoch

• Somewhat counter-intuitively:
• Smaller batch sizes can work their

way out of “local minima” more
easily

• Batch sizes that are too large can
end up getting stuck in the wrong
solution

• Random shuffling at each epoch
can make this look like very
inconsistent results from run to
run

sundog-education.com 247

To Recap

• Small batch sizes tend to not get stuck in local minima
• Large batch sizes can converge on the wrong solution at

random
• Large learning rates can overshoot the correct solution
• Small learning rates increase training time

sundog-education.com 248

neural network
regularization

sundog-education.com 249

what is
regularization?

• Preventing overfitting
• Models that are good at making

predictions on the data they were trained
on, but not on new data it hasn’t seen
before

• Overfitted models have learned patterns
in the training data that don’t generalize to
the real world

• Often seen as high accuracy on training
data set, but lower accuracy on test or
evaluation data set.

• When training and evaluating a model, we
use training, evaluation, and testing data
sets.

• Regularization techniques are
intended to prevent overfitting.

Chabacano [CC BY-SA 4.0 (https://creativecommons.org/licenses/by-sa/4.0)]

sundog-education.com 250

Too many layers?
Too many neurons?

Σ ΣΣ

Weight
1

Weight
2

Bias
Neuro
n (1.0)

Input 1 Input 2

Σ

Σ ΣΣ

softmax

Bias
Neuro
n (1.0)

sundog-education.com 251

Σ ΣΣ

Weight
1

Weight
2

Bias
Neuro
n (1.0)

Input 1 Input 2

Σ

Σ ΣΣ

softmax

Bias
Neuro
n (1.0)

Dropout

XX

sundog-education.com 252

Early Stopping

sundog-education.com 253

wrapping up

sundog-education.com 254

recommendations
with deep learning

sundog-education.com 255

is deep learning
overkill?

sundog-education.com 256

restricted
boltzmann

machines (rbm)

sundog-education.com 257

rbm’s: the paper

sundog-education.com 258

what is a rbm

Σ + 𝑏𝑏1

Σ + 𝑏𝑏2

Σ + 𝑏𝑏3

visible hidden

𝑤𝑤1
𝑤𝑤2

𝑤𝑤𝑛𝑛…

𝑥𝑥1

𝑥𝑥2

𝑥𝑥3

𝑥𝑥4

sundog-education.com 259

rbm backward pass

𝑏𝑏1

𝑏𝑏2

𝑏𝑏3

𝑏𝑏4

visible hidden

𝑤𝑤1
𝑤𝑤2

𝑤𝑤𝑛𝑛…

sundog-education.com 260

rbm’s for
recommender systems

0 0 0 0 1

visible (item ratings for
a given user)

hidden

contrastive
divergence

gibbs
sampler

0 0 1 0 0

sundog-education.com 261

code walkthrough

sundog-education.com 262

code walkthrough

sundog-education.com 263

code walkthrough

sundog-education.com 264

exercise

Find the best set of hyperparameters for the rbm algorithm.

sundog-education.com 265

code walkthrough

sundog-education.com 266

Generative
Adversarial
Networks

sundog-education.com 267

Generative
Adversarial
Networks

• Yes, it’s the tech behind
“deepfakes” and all those viral
face-swapping and aging apps

• But researchers had nobler
intentions…

• Generating synthetic datasets to
remove private info

• Anomaly detection
• Self-driving
• Art, music

Datasciencearabic1, CC BY-SA 4.0
<https://creativecommons.org/licenses/by-sa/4.0>, via Wikimedia
Commons

This person doesn’t exist.

sundog-education.com 268

GAN’s

• Learns the actual distribution of latent vectors
• Doesn’t assume Gaussian normal distributions

like VAE’s

• The generator maps random noise(!) to a
probability distribution

• The discriminator learns to identify real
images from generated (fake) images

• The generator is trying to fool the
discriminator into thinking its images are real

• The discriminator is trying to catch the
generator

• The generator and discriminator are
adversarial, hence the name…

• Once the discriminator can’t tell the difference
anymore, we’re done (in theory)

sundog-education.com 269

transpose
convolution

• The generator may use Conv2DTranspose layers
to reconstruct images from random input

• It learns weights used to create new image
pixels from lower-dimensional representations

• Well, it can be used on more than just
images

• Stride of 2 is often used
• Can use max-unpooling (inverse of max-pooling)
• Think of the decoder as a CNN that works

backwards.

sundog-education.com 270

fancy math

• That’s the adversarial loss function.
• We call it a “min-max game”

• The generator is minimizing its loss in creating realistic images
• The discriminator, at the same time, is maximizing its ability to

detect fakes
• It is complicated and delicate.

• Training is very unstable; lots of trial & error / hyperparameter tuning
• Mode collapse
• Vanishing gradients

sundog-education.com 271

code walkthrough

sundog-education.com 272

deep neural
networks for

recommendations

sundog-education.com 273

autoencoders for
recommendations (“autorec”)

𝑅𝑅1𝑖𝑖 𝑅𝑅2𝑖𝑖 𝑅𝑅3𝑖𝑖 𝑅𝑅𝐸𝐸𝑖𝑖…

𝑅𝑅1𝑖𝑖 𝑅𝑅2𝑖𝑖 𝑅𝑅3𝑖𝑖 𝑅𝑅𝐸𝐸𝑖𝑖…

+1

+1

sundog-education.com 274

deeper networks
with keras

Credit:
https://nipunbatra.github.io/blog/2017
/recommend-keras.html

sundog-education.com 275

code walkthrough

sundog-education.com 276

session-based
recommendations

with rnn’s

sundog-education.com 277

e-commerce
clickstream

sundog-education.com 278

video views

sundog-education.com 279

the paper

sundog-education.com 280

GRU4Rec (gated
recurrent unit)

Image: Jeblad / CC BY-SA 4.0

sundog-education.com 281

GRU4Rec

input layer (one-hot encoded item)

embedding layer

gru layers

feedforward layers

output scores on items

sundog-education.com 282

GRU4Rec

• session-parallel mini-batches
• sampling the output
• ranking loss

sundog-education.com 283

is it overly complex?

sundog-education.com 284

exercise

https://bit.ly/2zsr6Lh

convert to python 3 (xrange/range, sort/sort_values)

import pandas and scikit-learn

adapt to the new data set format

create a train/test split

always run with a fresh kernel

sundog-education.com 285

my solution

http://tinyurl.com/y9ducpag

sundog-education.com 286

code walkthrough

sundog-education.com 287

bleeding edge alert!

sundog-education.com 288

GAN’s for
recommenders

sundog-education.com 289

GAN’s with a twist

ratings

ratings

GRU / RNN
/ other…

Older ratings

GRU / RNN
/ other…

sundog-education.com 290

the paper (well, one
of many really)

https://homangab.github.io/papers/recgan.pdf

sundog-education.com 291

TensorFlow
Recommenders

(TFRS)

sundog-education.com 292

TensorFlow
Recommenders

• From Google!
• Built on top of Keras
• Easy to use, but highly flexible

sundog-education.com 293

TFRS: retrieval

A retrieval stage selects recommendation
candidates

A ranking stage selects the best candidates and
ranks them

The retrieval model embeds user ID’s and movie
ID’s of rated movies into embedding layers of the
same dimension
• Each ID is mapped to a vector of N

dimensions
• Position in this N-dimensional space

represents similarity!

The two are multiplied to create query-candidate
affinity scores for each rating during training

If the affinity score for the rating is higher than
other for other candidates, our model is good

Top-K recs via “brute force” sorting all candidates

retrieval: the two towers

Query model Candidate model

Convert user ID’s to
integers

Embedding layer

Convert movie ID’s to
integers

Embedding layer

tfrs.Model(user, movie) pairs

sundog-education.com 294

code walkthrough

sundog-education.com 295

TFRS: ranking

As ranking uses a subset of candidates generated by retrieval, you can do fancier stuff.

For example, actually try to predict ratings using multiple stacked dense layers.

User AND movie
embeddings

256 Dense layer

64 Dense layer

1 layer (final prediction)

sundog-education.com 296

code walkthrough

sundog-education.com 297

TFRS: side features

You can augment ratings data with content-based
data, or any other features really
• Data should add context
• Helps cold-start

Just add them into the query or candidate towers as
additional embeddings

Preprocessing is up to you
• Categorical data should turn into embeddings
• Continuous features should be normalized (ie

timestamps)
• Standardization
• Discretization
• Vectorizing text

Query “tower”

Convert user ID’s to
integers

Embedding layer

Normalize and/or
discretize timestamps

Embedding layer

Concatenated Embedding Layer

sundog-education.com 298

TFRS: deep
retrieval models

Query “tower”

Convert user ID’s to
integers

Embedding layer

Normalize and/or
discretize timestamps

Embedding layer

Concatenated Embedding Layer

64 Dense layer

32 Dense layer
…can do similar stuff on the candidate tower

sundog-education.com 299

TFRS: multi-task
recommenders

Combine different kinds of user behavior
• Page views
• Image Clicks
• Cart adds
• Purchases
• Reviews
• Returns
• Ratings

A joint model may perform better than multiple task-
specific models

Multiple objectives & loss functions

Use transfer learning to learn representations from a task
with more data for a task with less

sundog-education.com 300

TFRS: deep & cross
networks

Feature crosses are hard

Recommendations where combined
features provide additional context

If you bought fruit AND cookbooks,
recommend a blender

sundog-education.com 301

TFRS: deep & cross
networks

Cross Networks explicitly apply feature crossing at each layer

• Combine with a Deep Network (MLP) to make a DCN
• Stacked, or in parallel
• tfrs.layers.dcn.Cross() makes it easy

Images: tensorflow.org

sundog-education.com 302

TFRS: into
production

Retrieval models are slow when evaluated with
brute force
• Approximate Nearest Neighbor search (ANN)
• ScaNN package from Google does this
• tfrs.layers.factorized_top_k.ScaNN
• It is approximate! But way faster

Serving the results in production
• Export saved models to SavedModel format
• Serve the SavedModel via Tensorflow

Serving
• See end of retrieval sample for an example

sundog-education.com 303

code walkthrough

sundog-education.com 304

bleeding edge alert!

sundog-education.com 305

deep factorization
machines

sundog-education.com 306

the paper

sundog-education.com 307

higher-order
feature interactions

• app category
• time

• app category
• gender
• age

sundog-education.com 308

deepfm
architecture

sundog-education.com 309

an ensemble approach

sundog-education.com 310

neural
collaborative

filtering

sundog-education.com 311

neural collaborative
filtering (ncf)

• Combines the strengths of matrix factorization and neural networks
• Matrix factorization has no non-linear steps, and can’t capture non-linear

relationships
• …But neural networks do!
• So, feed users and items through a Generalized Matrix Factorization (GMF) and

a Multi-Layer Perceptron (MLP) in parallel
• Feed their outputs into a NeuMF layer that concatenates them

sundog-education.com 312

neural collaborative
filtering

sundog-education.com 313

introducing
librecommender

• Like surpriselib, but with Tensorflow (or PyTorch, depending on the algorithm)
• Supports newer AI-based algorithms

• Transformers!
• GRU4Rec
• YouTube
• DeepFM
• Item or user-based CF
• ALS
• Neural Collaborative Filtering
• …and many more

• Hybrid recommenders with CF and content-based features
• Implicit or explicit data
• Includes both training (libreco) and serving (libserving) modules

sundog-education.com 314

librecommender:
simple example train_data, eval_data, test_data = random_split(data, multi_ratios=[0.8, 0.1, 0.1])

 train_data, data_info = DatasetPure.build_trainset(train_data)
 eval_data = DatasetPure.build_evalset(eval_data)
 test_data = DatasetPure.build_testset(test_data)
 print(data_info) # n_users: 5894, n_items: 3253, data sparsity: 0.4172 %

 lightgcn = LightGCN(
 task="ranking",
 data_info=data_info,
 loss_type="bpr",
 embed_size=16,
 n_epochs=3,
 lr=1e-3,
 batch_size=2048,
 num_neg=1,
 device="cuda",
)
 # monitor metrics on eval_data during training
 lightgcn.fit(
 train_data,
 neg_sampling=True, # sample negative items for train and eval data
 verbose=2,
 eval_data=eval_data,
 metrics=["loss", "roc_auc", "precision", "recall", "ndcg"],
)

 # predict preference of user 2211 to item 110
 print("prediction: ", lightgcn.predict(user=2211, item=110))
 # recommend 7 items for user 2211
 print("recommendation: ", lightgcn.recommend_user(user=2211, n_rec=7))

sundog-education.com 315

code walkthrough

sundog-education.com 316

more technologies
to watch

sundog-education.com 317

word2vec

to boldly go where no one has

embedding layer

hidden layer

softmax

gone

sundog-education.com 318

extending word2vec

embedding layer

hidden layer

softmax

song 5

song 1 song 2 song 3 song 4

sundog-education.com 319

3D cnn’s for
session-based recs

clicks (time)

categories
descriptions

sundog-education.com 320

3D cnn’s for
session-based recs

sundog-education.com 321

the paper

sundog-education.com 322

deep feature
extraction with cnn’s

classical

sundog-education.com 323

scaling it up

sundog-education.com 324

apache spark

sundog-education.com 325

installing spark
(if you’re brave)

Install Java 8 SDK from Oracle to c:\jdk

Add JAVA_HOME environment variable to where you installed it
 Unix: export JAVA_HOME=/usr/lib/jvm/java-1.8.0-openjdk-amd64
 Windows: Use the system control panel, and set JAVA_HOME to c:\jdk

Windows only:
 Create C:\winutils\bin and copy the winutils.exe file from the ScalingUp folder into it
 Set HADOOP_HOME environment variable to c:\winutils\
 Add %HADOOP_HOME%\bin to your PATH environment variable
 Restart your PC.

Install pyspark using Anaconda Navigator into your RecSys environment.

sundog-education.com 326

spark in a nutshell
spark driver

script

cluster
manager

executor executor executor

sundog-education.com 327

spark software
architecture

Spark Streaming Spark SQL MLLib GraphX

SPARK CORE

sundog-education.com 328

rdd’s

resilient

distributed

dataset

sundog-education.com 329

evolution of the
spark api

RDD DataFrame DataSet

jvm objects row objects internally rows,
externally jvm objects

sundog-education.com 330

code walkthrough

sundog-education.com 331

code walkthrough

sundog-education.com 332

amazon dsstne

sundog-education.com 333

a sample config file
{
 "Version" : 0.7,
 "Name" : "AE",
 "Kind" : "FeedForward",
 "SparsenessPenalty" : {
 "p" : 0.5,
 "beta" : 2.0
 },

 "ShuffleIndices" : false,

 "Denoising" : {
 "p" : 0.2
 },

 "ScaledMarginalCrossEntropy" : {
 "oneTarget" : 1.0,
 "zeroTarget" : 0.0,
 "oneScale" : 1.0,
 "zeroScale" : 1.0
 },
 "Layers" : [
 { "Name" : "Input", "Kind" : "Input", "N" : "auto", "DataSet" : "gl_input", "Sparse" : true },
 { "Name" : "Hidden", "Kind" : "Hidden", "Type" : "FullyConnected", "N" : 128, "Activation" : "Sigmoid", "Sparse" : true },
 { "Name" : "Output", "Kind" : "Output", "Type" : "FullyConnected", "DataSet" : "gl_output", "N" : "auto", "Activation" : "Sigmoid", "Sparse" : true }
],

 "ErrorFunction" : "ScaledMarginalCrossEntropy"
}

sundog-education.com 334

code walkthrough

sundog-education.com 335

scaling up dsstne

sundog-education.com 336

learning more

https://amzn.to/2I69kAw

sundog-education.com 337

amazon
sagemaker

sundog-education.com 338

sagemaker

build

train

deploy

sundog-education.com 339

movielens +
sagemaker

load ml-1m ratings

one-hot encode user
& movie

build binary label
vector

convert to protobuf &
write to s3

train, deploy, predict

sundog-education.com 340

code walkthrough

sundog-education.com 341

other systems of
note

sundog-education.com 342

let’s be clear about
surpriselib

sundog-education.com 343

amazon
personalize

Amazon
Personalize

API

Amazon
S3 Amazon Personalize

(optimize models,
train models, store &

host model, cache
model)

Personalization
API (batch or

real-time)

inventory,
user data

behavior
data

sundog-education.com 344

recombee

AI-powered recommendation engine

RESTful API / SDK (JavaScript, Python, Node.js, PHP. Java, etc.)

you send it activity data, it gives you recommendations.

3 tiers of pricing based on usage ($99/mo - $1499/mo)

var client = new recombee.ApiClient('database-id', dbPublicToken); // Send a view of item 'item_x' by user 'user_42'

client.send(new recombee.AddDetailView('user_42', 'item_x')); // Get 5 recommended items for user 'user_42'. Recommend only items which haven't
expired yet.

client.send(new recombee.RecommendItemsToUser('user_42', 5, {filter: " 'expires' > now()"}), (err, resp) => { // Show recommendations });

sundog-education.com 345

predictionIO

apache, open-source machine learning server

not specifically for recommenders

simplifies deployment of web services to host trained
models

similar in spirit to SageMaker

for recommendations, you’re limited to Apache Spark out
of the box
 but you can add your own.

sundog-education.com 346

richrelevance

the granddaddy of hosted, personalization-
as-a-service

lots of big-name clients

started by some ex-Amazon guys

“Xen AI” – not just a black box

“personalization cloud” – personalized
recs, nav, content, search

pricing: if you have to ask…

sundog-education.com 347

many, many more

Peerius – Strands – SLI Systems – ParallelDots – Azure ML – Gravity
R&D – Dressipi – Sajari – IBM Watson – Segmentify – Mr. Dlib –
Raccoon – Universal Recommender – HapiGER – Mahout – RecDB –
Oryx – Crab – LightFM – Rexy - QMF – Spotlight – tensorrec – hermes –
CaseRecommender – ProbQA – Microsoft Recommenders – Gorse –
Cornac - Devooght – LIBMF – RankSys – LibRec – Easyrec – Lenskit –
Apache Giraph

sundog-education.com 348

system
architecture

sundog-education.com 349

recommendations in the real
world: pre-computed recs

user
behavior

data
recommender

model

pre-
generated

recs

rec
service
(fleet)

website /
app

train

deploy

sundog-education.com 350

recommendations in the real world:
real-time collaborative filtering

user
behavior

data
item

similarities job

pre-
generated

sims

rec
service
(fleet)

website /
app

train

deploy

sundog-education.com 351

recommendations in the real
world: deploy a trained model

user
behavior

data
recommender

model

rec
service
(fleet)

website /
app

train

deploy

sundog-education.com 352

the cold-start
problem

sundog-education.com 353

cold-start: new user
solutions

• use implicit data
• use cookies (carefully)
• geo-ip
• recommend top-sellers or promotions
• interview the user

sundog-education.com 354

cold-start: new item
solutions

• just don’t worry about it
• use content-based attributes
• map attributes to latent features (see LearnAROMA)
• random exploration

sundog-education.com 355

exercise: random
exploration

sundog-education.com 356

code walkthrough

sundog-education.com 357

stoplists

sundog-education.com 358

things you might
stoplist

• adult-oriented content
• vulgarity
• legally prohibited topics (i.e. Mein Kampf)
• terrorism / political extremism
• bereavement / medical
• competing products
• drug use
• religion

sundog-education.com 359

exercise: implement
a stoplist

sundog-education.com 360

code walkthrough

sundog-education.com 361

filter bubbles

sundog-education.com 362

transparency and
trust

sundog-education.com 363

outliers

sundog-education.com 364

exercise: filtering
outliers

sundog-education.com 365

code walkthrough

sundog-education.com 366

gaming the system

sundog-education.com 367

implicit data,
explicit problems.

sundog-education.com 368

international
markets and laws

sundog-education.com 369

dealing with time

sundog-education.com 370

value-aware
recommendations

sundog-education.com 371

case studies

sundog-education.com 372

youtube

sundog-education.com 373

the paper

sundog-education.com 374

youtube’s
challenges

• scale
• freshness
• noise

sundog-education.com 375

youtube’s (and google’s)
answer to everything

sundog-education.com 376

youtube’s candidate
generation

……

average average

watch vector search vector geographic age gender …

video watches search tokens

ReLU

ReLU

ReLU

softmaxknn index
class
probabilitiestop-N

video vectors

user vector

sundog-education.com 377

learning to rank

impressions languages time elapsed prev. impress …

ReLU

ReLU

ReLU

sundog-education.com 378

learnings from
youtube

• don’t train just on views
• withhold information
• dealing with series
• rank by consumption, not clicks
• learning-to-rank

sundog-education.com 379

netflix

sundog-education.com 380

netflix sources

sundog-education.com 381

what model does
netflix use?

all of them!

sundog-education.com 382

everything is a
recommendation

sundog-education.com 383

whole-page
optimization

sundog-education.com 384

don’t predict
ratings

sundog-education.com 385

personalized
ranking

sundog-education.com 386

context-aware

sundog-education.com 387

hybrid approaches

sundog-education.com 388

ensemble
approaches

sundog-education.com 389

combining behavior
and semantic data

sundog-education.com 390

exercise: build a
hybrid

recommender

sundog-education.com 391

code walkthrough

sundog-education.com 392

learning more

sundog-education.com 393

current research:
acm sigkdd

sundog-education.com 394

collaborative
filtering

sundog-education.com 395

going all-in

	Slide Number 1
	recommender systems�getting set up
	Slide Number 3
	Slide Number 4
	Slide Number 5
	course overview
	optional sections
	Slide Number 8
	what it is not
	for example
	what it is
	this is a recommender engine
	many flavors of recommenders
	recommending things
	recommending content
	recommending music
	recommending people
	recommending search results
	understanding you
	understanding you… explicitly
	understanding you… implicitly�
	top-N recommenders
	(one) anatomy of a top-N recommender
	another way to do it
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	train/test
	k-fold cross-validation
	measuring accuracy
	mean absolute error (MAE)
	root mean square error (RMSE)
	how did we get here?
	evaluating top-n recommenders
	leave-one-out cross validation
	average reciprocal hit rate (ARHR)
	cumulative hit rate (cHR)
	rating hit rate (rHR)
	coverage
	diversity
	novelty
	the long tail
	churn
	responsiveness
	what’s important?
	online A/B tests!
	perceived quality
	Slide Number 57
	Slide Number 58
	Slide Number 59
	Slide Number 60
	Slide Number 61
	Slide Number 62
	Slide Number 63
	Slide Number 64
	Slide Number 65
	Slide Number 66
	Slide Number 67
	Slide Number 68
	Slide Number 69
	Slide Number 70
	building a recommender engine
	surpriselib algorithm base class
	creating a custom algorithm
	building on top of surpriselib
	algorithm bake-offs
	it’s just this easy
	let’s jump in
	Slide Number 78
	Slide Number 79
	examples of movie attributes
	movielens genre data
	cosine similarity
	multi-dimensional space!
	convert genres to dimensions
	multi-dimensional cosines
	turning it into code
	release years
	time similarity
	k-nearest-neighbors
	knn code
	let’s dive in
	Slide Number 92
	Slide Number 93
	a note about implicit ratings.
	implicit data can be powerful
	using implicit data
	not all implicit ratings are created equal.
	bleeding edge alert!
	mise en scène
	mise en scène data
	Slide Number 101
	credits
	exercise
	my results
	better year-based recs
	Slide Number 106
	(one) anatomy of a top-N recommender
	ways to measure similarity
	cosine similarity
	sparsity
	adjusted cosine
	(item-based) pearson similarity
	spearman rank correlation
	mean squared difference
	jaccard similarity
	recap
	Slide Number 117
	user-based collaborative filtering
	user-based collaborative filtering
	user-based collaborative filtering
	user-based collaborative filtering
	user-based collaborative filtering
	candidate generation
	candidate scoring
	candidate sorting
	candidate filtering
	user-based collaborative filtering
	Slide Number 128
	Slide Number 129
	things, not people
	item-based collaborative filtering
	item-based collaborative filtering
	item-based collaborative filtering
	Slide Number 134
	exercise
	exercise solution: item-based
	exercise solution: user-based
	evaluating collaborative filtering
	exercise
	exercise solution
	Slide Number 141
	another way to do it
	user-based KNN
	user-based knn
	item-based KNN
	user-based knn
	Slide Number 147
	exercise
	exercise results: user-based
	exercise results:�item-based
	more experiments
	why is knn so bad?
	bleeding edge alert!
	translation-based recommendations
	translation-based recommendations
	translation-based recommendations
	translation-based recommendations
	Slide Number 158
	Slide Number 159
	the problem
	principal component analysis
	eigenvectors are principal components
	pca on movie ratings
	pca on movie ratings
	matrix factorization
	but wait
	enough talk
	Slide Number 168
	a matrix factorization bestiary
	tuning svd
	exercise
	svd tuning results
	bleeding edge alert!
	sparse linear methods (SLIM)
	SLIM results
	how SLIM works
	Slide Number 177
	Slide Number 178
	Slide Number 179
	gradient descent
	autodiff
	softmax
	in review
	Slide Number 184
	the biological inspiration
	cortical columns
	the first artificial neurons
	the linear threshold unit (ltu)
	the perceptron
	multi-layer perceptrons
	a modern deep neural network
	Slide Number 192
	Slide Number 193
	backpropagation
	activation functions (aka rectifier)
	optimization functions
	avoiding overfitting
	tuning your topology
	Slide Number 199
	activation functions
	linear activation function
	binary step function
	instead we need non-linear activation functions
	Sigmoid / Logistic / TanH
	Rectified Linear Unit (ReLU)
	Leaky ReLU
	Parametric ReLU (PReLU)
	Other ReLU variants
	Softmax
	Choosing an activation function
	Slide Number 211
	why tensorflow?
	tensorflow basics
	creating a neural network with tensorflow
	creating a neural network with tensorflow
	make sure your features are normalized
	let’s try it out
	Slide Number 218
	why keras?
	let’s dive in
	example: multi-class classification
	example: binary classification
	integrating keras with scikit-learn
	let’s try it out
	Slide Number 225
	cnn’s: what are they for?
	cnn’s: how do they work?
	how do we “know” that’s a stop sign?
	cnn’s with keras
	cnn’s are hard
	specialized cnn architectures
	let’s try it out
	Slide Number 233
	rnn’s: what are they for?
	a recurrent neuron
	another way to look at it
	a layer of recurrent neurons
	rnn topologies
	training rnn’s
	training rnn’s
	training rnn’s
	let’s run an example
	Slide Number 243
	Learning Rate
	Effect of learning rate
	Batch Size
	To Recap
	Slide Number 248
	what is regularization?
	Too many layers? Too many neurons?
	Dropout
	Early Stopping
	Slide Number 253
	Slide Number 254
	is deep learning overkill?
	Slide Number 256
	rbm’s: the paper
	what is a rbm
	rbm backward pass
	rbm’s for recommender systems
	Slide Number 261
	Slide Number 262
	Slide Number 263
	exercise
	Slide Number 265
	Slide Number 266
	Generative Adversarial Networks
	GAN’s
	transpose convolution
	fancy math
	Slide Number 271
	Slide Number 272
	autoencoders for recommendations (“autorec”)
	deeper networks with keras
	Slide Number 275
	Slide Number 276
	e-commerce clickstream
	video views
	the paper
	GRU4Rec (gated recurrent unit)
	GRU4Rec
	GRU4Rec
	is it overly complex?
	exercise
	my solution
	Slide Number 286
	bleeding edge alert!
	Slide Number 288
	GAN’s with a twist
	the paper (well, one of many really)
	Slide Number 291
	TensorFlow Recommenders
	TFRS: retrieval
	Slide Number 294
	TFRS: ranking
	Slide Number 296
	TFRS: side features
	TFRS: deep retrieval models
	TFRS: multi-task recommenders
	TFRS: deep & cross networks
	TFRS: deep & cross networks
	TFRS: into production
	Slide Number 303
	bleeding edge alert!
	Slide Number 305
	the paper
	higher-order feature interactions
	deepfm architecture
	an ensemble approach
	Slide Number 310
	neural collaborative filtering (ncf)
	neural collaborative filtering
	introducing librecommender
	librecommender: simple example
	Slide Number 315
	Slide Number 316
	word2vec
	extending word2vec
	3D cnn’s for session-based recs
	3D cnn’s for session-based recs
	the paper
	deep feature extraction with cnn’s
	Slide Number 323
	Slide Number 324
	installing spark (if you’re brave)
	spark in a nutshell
	spark software architecture
	rdd’s
	evolution of the spark api
	Slide Number 330
	Slide Number 331
	Slide Number 332
	a sample config file
	Slide Number 334
	scaling up dsstne
	learning more
	Slide Number 337
	sagemaker
	movielens + sagemaker
	Slide Number 340
	Slide Number 341
	let’s be clear about surpriselib
	amazon personalize
	recombee
	predictionIO
	richrelevance
	many, many more
	Slide Number 348
	recommendations in the real world: pre-computed recs
	recommendations in the real world: real-time collaborative filtering
	recommendations in the real world: deploy a trained model
	the cold-start problem
	cold-start: new user solutions
	cold-start: new item solutions
	Slide Number 355
	Slide Number 356
	stoplists
	things you might stoplist
	Slide Number 359
	Slide Number 360
	filter bubbles
	transparency and trust
	outliers
	Slide Number 364
	Slide Number 365
	gaming the system
	implicit data, explicit problems.
	international markets and laws
	dealing with time
	value-aware recommendations
	Slide Number 371
	Slide Number 372
	the paper
	youtube’s challenges
	youtube’s (and google’s) answer to everything
	youtube’s candidate generation
	learning to rank
	learnings from youtube
	Slide Number 379
	netflix sources
	what model does netflix use?
	everything is a recommendation
	whole-page optimization
	don’t predict ratings
	personalized ranking
	context-aware
	Slide Number 387
	ensemble approaches
	combining behavior and semantic data
	Slide Number 390
	Slide Number 391
	Slide Number 392
	current research:�acm sigkdd
	collaborative filtering
	going all-in

