MASTERING THE SYSTEM
DESIGN INTERVIEW

BY FRANK KANE su"dogw SLIDE 1

Why listen to me?

PRINCIPLES

e s es +ee. ALRL LI Ll S5

iy

& R \.. sewe sswy SN Jues sul.
-— % vhzﬁﬂd..h A\ mau -mnmw 11/]

. TRee 292 SERS Qesr 24y
R | T T
g e N v oAb oo

g=> yr=y rlhsgers >

Y NI,

4
vone o s e AR e

.
i

Fisar %

g N
v AR N

L1 LU
)

S IAL 1
yERe FESN AERES S3%% & . \
w27y 7 JTIETTTHT T T TTREY
., 7" aein a8 R " aaes
$r- T Soan sasn o0 B85 ac.‘aa:
R L R e

..:::: ___

L

) B

§ HTTP server
Database

Single point of failure!

BY FRANK KANE sundogm SLIDE 5

Well, that's a
little better
I anyhow.

BY FRANK KANE sundogm SLIDE 6

O 00 0 a

CD o 3 oo C= =

ad

Servers only
come so large,
and you still
have single

I points of failure.

]

Sundog’ SLIDE 7

BY FRANK KANE

BY FRANK KANE

[

Load Balancer
SO

Sundog-

This is easier if
your web
servers are
“stateless”.

SLIDE

8

Choose the simplest architecture that meets your
projected traffic requirements.

But no simpler.

BY FRANK KANE sundogm SLIDE 9

Side note: Where do
servers come from?

 Provisioned within your own company'’s
data centers

* Cloud services (i.e., Amazon EC2, Google
Compute Engine, Azure VM’s)

 Fully managed “serverless” services (i.e.,
Lambda, Kinesis, Athena)

SCALING THE DATABASE

O 00 0 40 [

CD o 3 oo C= =

I~
!
o

BY FRANK KANE sundogw SLIDE 12

O 00 0 40 [

CD o 3 oo C= =

O
5
<>
} Replication

BY FRANK KANE sundogm SLIDE 13

BY FRANK KANE sundogw SLIDE 14

Horizontal Scaling of Databases: Sharding

Client & request router

Shard 2 Shard 3

Shard 2 Shard 3
backup backup

BY FRANK KANE su“dogw SLIDE 15

Education

More Specific Example: MongoDB

App Server
Process

CAanfic
CAanfic

Config
Server

BY FRANK KANE

mongos

PRIMARY SECONDARY

SECONDARY

PRIMARY SECONDARY

SECONDARY

PRIMARY SECONDARY

SECONDARY

RS = “Replica Set”

Sundog-

SECONDARY

SECONDARY

SECONDARY

SECONDARY

SECONDARY

SECONDARY

RS1: users
Min -> 1000

RS2: users
1000 -> 5000

RS3: users
5000 -> max

SLIDE 16

More Specific Example: Cassandra

cassandra

BY FRANK KANE su“dogw SLIDE 17

Tough to do joins across shards.
* Resharding
Hotspots

Most “NoSQL" databases actually do support most SQL
operations and use SQL as their API.

« Still works best with simple key/value lookups.
A formal schema may not be needed.
» Examples: MongoDB, DynamoDB, Cassandra, HBase

Sharded databases
are sometimes
called “NoSQL”

NORMALIZED DATA: Less storage space, more lookups, updates in one place

CustomerID | Time
ID

123 Frank Kane 555-1234

123 6:30 451 john Smith 555-5233
2 451 7:00
3 123 8:00

DENORMALIZED DATA: More storage place, one lookup, updates are hard

123 Frank Kane 555-1234 6:30
2 451 John Smith 555-5233 7:00
3 123 Frank Kane 555-1234 8:00

BY FRANK KANE su"dogw SLIDE 19

Cloud
Solutions /

Data Lakes

Another approach is to just throw data into text files (csv, json
perhaps) into a big distributed storage system like Amazon S3

* Thisis called a “"data lake”

» Common approach for “big data” and unstructured data
Another process (i.e.,, Amazon Glue) creates a schema for that data
And cloud-based features let you query the data.

« Amazon Athena (serverless)

« Amazon Redshift (distributed data warehouse)

You still need to think about how to partition the raw data for best
performance.

Amazon Simple Storage AWS Glue

Service (Amazon S3)

Amazon Redshift /

ACID
Compliance

Atomicity: Either the entire transaction
succeeds, or the entire thing fails.

Consistency: All database rules are
enforced, or the entire transaction is
rolled back.

Isolation: No transaction is affected by
any other transaction that is still in
progress.

Durability: Once a transaction is

committed, it stays, even if the system
crashes immediately after.

BY FRANK KANE

Availability

MyS

o

cassandra

Consistency Partition-Tolerance

adMAaZON (Instrongly consistent
DynamoDB mode)

Sundog’

SLIDE 22

MongoDB: Single Master; trades off availability

App Server
Process

mongos

CAanfic
CAanfic

Config
Server

BY FRANK KANE

PRIMARY SECONDARY

SECONDARY

PRIMARY SECONDARY

SECONDARY

PRIMARY SECONDARY

SECONDARY
RS = “Replica Set”

Sundog?

SECONDARY

SECONDARY

SECONDARY

SECONDARY

SECONDARY

SECONDARY

RS1: users
Min -> 1000

RS2: users
1000 -> 5000

RS3: users
5000 -> max

SLIDE 23

Cassandra: No single master, eventually consistent

cassandra

BY FRANK KANE su“dogw SLIDE 24

Be sure to understand requirements
about scale, consistency, and availability
before proposing a specific database
solution

ASK QUESTIONS

BY FRANK KANE sundogm SLIDE 25

Conmplio
~ — 0 - f

CACHING

I:Ig’ﬂl Load Balancer

BY FRANK KANE sundogm SLIDE 27

JO0d 0BG

20
03o Load Balancer

Caching Layer

]

BY FRANK KANE su“dogw SLIDE 28

Horizontally scaled servers

Clients hash requests to a given server
In-memory (fast)

Appropriate for applications with more reads
than writes

The expiration policy dictates how long data is
cached. Too long and your data may go stale;
too short and the cache won't do much good.
Hotspots can be a problem (the “celebrity
problem”)

Cold-start is also a problem. How do you
initially warm up the cache without bringing
down whatever you are caching?

BY FRANK KANE

Sundog-

App / web servers

Cache servers

SLIDE 29

* LRU: Least Recently Used
* LFU: Least Frequently Used
* FIFO: First In First Out

BY FRANK KANE

Key 1 Key2 Key3 Key4 EEEVET

Doubly
Linked
List

Sample LRU data architecture
(for a given shard)

sundogw SLIDE 30

» In-memory
key/value store

= Open source.

BY FRANK KANE

A Few Caching Technologies

» Adds more » Made for .NET, = Java = Amazon Web
features Java, Node js = Just a distributed Services (AWS)
» Snapshots, Map really solution
replication, = Fully-managed
transactions, Redis or
pub/sub Memcached
» Advanced data
structures
» More complexin
general
/Sundog“ SLIDE 31

Education

Geographically distributed Q @ Q @ Q @

Local hosting of
« HTML
 Javascript
. Images usS EU IN...
Some limited computation may be
available as well
Mainly useful for static content, such as
images or static web pages.

* You probably won't be asked to design
a static web page, though!

Caching Layer

BY FRANK KANE su"dogw SLIDE 32

CDN Providers
AWS Google Microsoft
CloudFront @ Cloud CDN B Azure CDN
. ...and
CloudFlare
¢ many more

We've already talked about backup hosts

PRIMARY SECONDARY SECONDARY

SECONDARY SECONDARY

PRIMARY SECONDARY SECONDARY _
...but what about a real disaster?

SECONDARY SECONDARY

PRIMARY SECONDARY SECONDARY

SECONDARY SECONDARY

BY FRANK KANE su“dogw SLIDE 35

Things that can fail

A single server

An entire rack

An entire data center (AKA "availability zone")

An entire region

...anything more, and you have bigger problems...

BY FRANK KANE sundogm SLIDE 37

Be smart about
distributing your servers

* Secondaries should be spread across
multiple racks, availability zones, and
regions

» Make sure your system has enough
capacity to survive a failure at any
reasonable scale

 This means overprovisioning

* You may need to balance budget vs.
availability. Not every system warrants
this.

* Provisioning a new server from an
offsite backup might be good enough.

 Again, ask questions!

DISTRIBUTED STORAGE

Distributed storage
solutions

* Services for scalable, available,
secure, fast object storage

e Use cases: “data lakes”
websites, backups, "big data”

* Highly durable:

 Amazon S3 offers
99.999999999% durability!

ARSI ot
=) \0'\(\\\)\\\\(\(\6\& Q\
““)w\\\)‘\<1(\x’\ 3\Y
A0~ \Q)\\J\\)\\ \(\\\
) WO IO \\)\&)\0\0*"“ 5}0‘“
AT R SRS
\Kx \0\0 AQ Ot
\O\ (\«\(\‘b.\ a ’\\TP\ b ’
\)‘ \ \r\\n) \(\

m()\ mms ST

. O\ Q'\(\ A5 ~¥ ,&'
| 50
0101050

*

« What do we mean by 99.999999999% durability?
» Thisis a percentile
* Thisoneis “119's" of durability

« Meaning: there is a 0.000000001% chance of
losing your data with S3.

* This can also be applied to /atency, or how quickly a
service responds to a request.

A brief
diversion about
SLA's

» For example: you can say your “3 nines” latency
is 100ms, meaning that 99.9% of requests
come back within 100ms.

* Availability SLA's can be deceiving...

* 99% availability would still result in 3.65 DAYS
of downtime in a year

* Whereas 99.9999% (6 nines) would result in
about 30 seconds of downtime

/4

Amazon S3

Distributed | By 20U g6
StOI‘age solutions - Different tiers, ie Glacier for archiving is cheaper, but

harder to read from. You can also choose the
amount of redundancy you need to save money.

* Hot / cool / cold storage
Google Cloud Storage
Microsoft Azure
Hadoop HDFS

 Typically self-hosted

Then there are all the consumer-oriented storage
solutions

* Dropbox, Box, Google Drive, iCloud, OneDrive, etc.
* Generally not relevant to system design

Client

Name Node

Metadata
(hame,
replicas,
locations)

A

BY FRANK KANE

Rack 1

A 4

Rack 2

Sundog-

Files are broken up into “blocks”
replicated across your cluster
Replication is rack-aware

A master “name node”
coordinates all operations
Clients try to read from nearest
replica

Writes get replicated across
different racks

For high availability, there may
be 3 or more name nodes to fall
back on, and a highly available
data store for metadata

SLIDE 43

.’/’ " I -
/ T
. !
.

Algorithms and Data
Structures: A Review

Head

Null

» Grows dynamically (as opposed to an array)

» Accessis O(n)

 Inserts at head is O(1)

* Insertatendis O(n)

« Best for use cases that involve sequential access

 Also good for stacks (LIFQO), or queues (FIFO) if you keep track of the tail as
well

* One pointer per node = low memory requirements

BY FRANK KANE su“dogw SLIDE 45

Head Tail

* Each node has a “next” and “previous” pointer

 Insert at front or back is O(1)

» Access is still O(n) (but could be faster in practice, since you can start at
either end)

« Useful for Deques

* MRU: always move most recent access to the head

BY FRANK KANE su"dogw SLIDE 46

» Each element has a left and right child

» If the left and right are ordered (i.e., left means “less than”) it is a binary
search tree

» Access is O(log(n)) on average, O(n) worst case

 Insert / delete also Olog(n)) as you need to do another search to rearrange
things

* Mostly used in cases where you need to do in-order traversals

BY FRANK KANE su“dogw SLIDE 47

BY FRANK KANE

Hash function

Buckets

Lists (or something)

A "hash function” quickly maps some key to a bucket

That bucket is then searched for the key's value

Hash collisions occur when more than one key maps to the same bucket
Inserts, lookups and deletions are O(1)... but O(n) in the worst case.
Used when fast lookups are needed

Sundog-

SLIDE 48

BY FRANK KANE

Consists of nodes (vertices) than can be connected in arbitrary ways (edges)

For example, friends in a social network, paths in a city, networks in general.

Traversal strategies include Breadth-First-Search (BFS) and Depth-First-
Search (DFS)
Access is O(V+E)

Sundog-

SLIDE 49

DR

 Start with an array (or list)

* This example is sorted but it doesn’t have to be

 Start at the beginning and keep going until you find what you're looking for.
* 0O(n)

BY FRANK KANE su"dogw SLIDE 50

 Start with a sorted array (or list)

 Start at the middle, split the array in 2

+ If what you're looking for is bigger, move to the second half of the array
* Orifit's smaller, move the first half.

* Check the middle, split the half you're looking at again if necessary

* Repeat until you find it

* Oflog(n))

BY FRANK KANE su“dogw SLIDE 51

Sorting

Algorithms

Unlikely to come up in the context of system design, so a
quick review

Insertion sort: O(n) best case, O(n?) worst case
* OK for small or mostly-sorted lists

Merge Sort: O(n log(n))
* Scales well to large lists

Quicksort: O(n log(n))

* Very fast, unless you hit the worst case scenario of
O(n?) due to poor choice of a pivot point

* Some complex implementations to avoid that
Bubble sort: O(n?)

« Simple but inefficient
Many others...

General recipe:
« Start with a forward index of keywords in each document
* i.e,DocumentID 123 => “the"’'quick"'red"fox"
* Problems: capitalization, spaces, punctuation, offensive terms, phrases
» Other signals of relevance can be included in addition to position (formatting, etc)
* Then generate an inverted index that maps keywords to documents
* Somehow those documents need to be ranked

« Couldjust be a function of how often the keyword appears and where

“Palm tree” (432,1), (36,1235),(432,55)
“Dinosaur” (22,2),(22,253),(724,4342),(552,793)
“Palm tree” 432,36

“Dinosaur” 22,552,724

BY FRANK KANE su"dogw SLIDE 53

TF-IDF: Document search

 Stands for Term Frequency and Inverse Document Frequency

 Important data for search — figures out what terms are most relevant for a document

* Sounds fancy!
» Butit's really one of the oldest and most basic search algorithms.

- 1 « Term Frequency just measures how often a word occurs
TF-IDF Explained e

« A word that occurs frequently is probably important
to that document’s meaning

» Document Frequency is how often a word occurs in an
entire set of documents, i.e., all of Wikipedia or every
web page

* This tells us about common words that just appear
everywhere no matter what the topic, like “a", “the’,
“and’, etc.

* S0 a measure of the relevancy of a word to a document might be:

Term Frequency

Document Frequency

Or: Term Frequency * Inverse Document Frequency

That is, take how often the word appears in a document, over how
often it just appears everywhere. That gives you a measure of how
important and unique this word is for this document

BY FRANK KANE sundogm SLIDE 56

* Avery simple search algorithm
could be:

» Compute TF-IDF for every
word in a corpus

 For a given search word, sort
the documents by their TF-

Apphﬂng TF-IDF to Search IDF score for that word
* Display the results
* Note computing “document
frequency” can be an
intractable problem if we're
talking about the entire
web.

Google's original trick. Inspired by citations of
academic papers.

Instead of relying entirely on the contents of a page,
also look at the page’s backlinks and the anchor text
for those links.

A page with lots of inbound links means it might be

more useful. PR(A) = (1 — d) + d(

The anchor text on those links are treated like C(Ty) o C(Tn)
additional keywords for the page.

A given backlink is weighted by how many other links

are on the page it's coming from

A dampening factor means we don't follow links

forever without losing weight on them.

Today Google has moved way past things like

PageRank and TF/IDF. Deep learning is said to play a

big role in ranking for example.

PR(Ty) = PR (Tn)>

BY FRANK KANE sundogm SLIDE 58

-

=7
N
=

A,

' N

MESSAGE QUEUES

Publishers /
Producers

BY FRANK KANE

- QAR =

» Decouples producers & consumers
* So if the consumers get backed up, that's
OK.
* Example: Amazon SQS service
* Single-consumer vs. pub/sub
» This is different from streaming data
(generally real-time, massive data)

Sundog-

Subscribed
consumers

SLIDE 60

e s 1
eyl g

smna - ¥ Clla Sdex contomm Ko KITS ata
e - 32/ mamker L6 bite par date pies)

wozs_o" 3/ e GF it mwme

- 20 / lasgt of Late axix |

- 208/ 28ag2n e data Tare

e ® 47 1aawn of Vate adis 3
ramo - T/ TITH daasaX Tay contain X
COMGNT FITZ (VoMM 1950 Tanstiors SydeaNl Torase An def
- 1180 2 OETEX ot

e TITI01E3 / Bute mar anb1 Masepe

Ry

~APACHE

 Distributed processing framework for big
data
* In-memory caching, optimized query

execution
M a p R e d U C e » Supports Java, Scala, Python, and R

» Supports code reuse across
* Batch processing
* [nteractive Queries
« Spark SQL
* Real-time Analytics
* Machine Learning
* MLLib
» Graph Processing
Spark Streaming
* Integrated with Kinesis, Kafka, on
EMR
« Sparkis NOT meant for OLTP

BY FRANK KANE su“dogw SLIDE 62

Executor
- Cache
-Tasks

Driver Cluster

Program Manager Executor

- Cache
-Tasks

-Spark Nelel(@
Context

Executor
- Cache
-Tasks

BY FRANK KANE su“dogw

Spark apps are run as
independent processes on a
cluster

The SparkContext (driver
program) coordinates them
SparkContext works through a
Cluster Manager

Executors run computations and
store data

SparkContext sends application
code and tasks to executors

SLIDE 63

Spark Components

Spark Streaming Spark SQL

Real-time streaming analytics DI 130X iEsiie el Classification, regression, Graph Processing

- MapReduce clustering, collaborative ETL, analysis, iterative graph
Strgctured streaming JDBC, ODBC, JSON, HDFS, ORC, o g . at) ysis, grap
Twitter, Kafka, Flume, HDFS, St (el litering, pattern mining computation
ZeroMQ ’ Read from HDFS, HBase... No longer widely used

SPARK CORE

Memory management, fault recovery, scheduling, distribute & monitor jobs, interact with storage
Scala, Python, Java, R

BY FRANK KANE su“dogw SLIDE 64

COMPUTING:
a very brief review

Amazon Web Google Cloud Microsoft Azure
Services (AWS)

Storage

Compute
NoSQL

Containers

Data streams
Spark / Hadoop
Data warehouse

Caching

BY FRANK KANE

EC2
DynamoDB

Kubernetes / ECR /
ECS

Kinesis
EMR
Redshift

ElastiCache (Redis)

Cloud Storage

Compute Engine
Bigtable

Kubernetes

DataFlow

Dataproc

BigQuery

Memorystore
(Redis or
Memcached)

Sundog-

Disk, Blob, or Data
Lake Storage

Virtual Machines

CosmosDB / Table
Storage

Kubernetes

Stream Analytics
Databricks

Azure SQL /
Database

Redis

SLIDE 66

Server logs

BY FRANK KANE

[

I

W

Amazon
Kinesis Data
Firehose

\%4

H £

AWS Glue Amazon
Athena

Amazon S3

B &

Amazon Amazon
Redshift QuickSight

Sundog-

(serverless)

(managed)

SLIDE 67

vbrid Cloud

Combine your own data centers
(“on-premises” or “private cloud”)
with a public cloud (AWS, Google,
Azure, etc.)
Allows easy scaling of on-premises
systems
Allows for regulations that require
certain data to be on-premises
Requires bridges between your data
center and the cloud

» The specifics vary by cloud

provider

“Multi-Cloud” — more than one
public cloud provider

BY FRANK KANE

Public cloud

Education

Hybrid cloud

Private cloud

SLIDE 68

INTERVIEW ST

Start by Clarifying Requirements

You will be given some incredibly vague problem, like “Design YouTube”. It is up to you to turn this
Into concrete requirements your system must meet.

Start by repeating the question and confirm you understand it with the interviewer.

ASK LOTS OF QUESTIONS
THINK OUT LOUD

Working Backwards

« Start from the customer experience to define your requirements
* (This will gain MAJOR POINTS at Amazon, but works in general.)
* YouTube Example:

* How will users discover videos? Do we need to think about building a search engine?
A recommender engine? An advertising engine?

* Use this to limit the scope of what you're being asked to do.
» Understand the customer experience you are being asked to deliver.

Working Backwards

Identify WHO are the customers
WHAT are their use cases
WHICH use cases do you need to concern yourself with
* You're not going to design all of YouTube in 20 minutes.
Your initial task is to CLARIFY THE REQUIREMENTS of what you are designing.

Your interviewer wants to see that you can think about problems from a business
perspective and not a purely technical one.

BY FRANK KANE sundogm SLIDE 72

Defining scaling
requirements

Nail down the scale of the system. Is it hundreds of users? Millions?

* This will inform you on the need for horizontal partitioning

* How often are users coming? What transaction rate do you need to support?
Also define the scale of the data.

* Hundreds of videos? Millions?

YouTube example: millions of users, millions of videos.

* You will need every trick in the book for horizontally scaled servers and data storage.
Some internal tool might not need this level of complexity, however.

» Always prefer the simplest solution that will work.

» Vertical scaling still has its place.

Defining latency
requirements

* How fast is fast enough?
 This informs the need for caching and CDN usage

* (Caching is also a tool for scaling, however — it reduces load on services & data
stores)

 Try to express this in SLA language (i.e., 100ms at three-nines for a given operation)
* YouTube example:

» (Caching video recommendations

 (Caching video metadata, descriptions, etc.

Defining availability
requirements

* How much downtime can you tolerate?
* |s being down a threat to the business? Or just an inconvenience?
« If the former, you need to design for high availability

 Opt for redundancy across many regions / racks / data centers rather for
simplicity or frugality

» Work backwards from the customer to
estimate what sorts of requirements make sense
from their standpoint.

» "Back of the envelope” calculations may be
needed. (How many users and videos *does*
YouTube have? You can make an educated guess.)

They might not tell

* Get buy-in from the interviewer before
proceeding to design the system.

Think Out
Loud

* Don'tjust clam up for ten minutes while
you think about things.

 Clarify requirements, define the
constraints of what you need to build.

* Think out loud about the solutions you're
considering to meet those requirements

 Give the interviewer a chance to steer
you in a different direction before you
start diving into details

* You don't know how much time you have
for this part of the interview, so make
every minute count.

Start with high-level components

Work backwards if you can (especially at
Amazon)

Then flesh out each component as time
permits

* How do they scale?

* How are they distributed for availability?
Let the interviewer talk, listen to them. They
may be trying to steer you in the right direction.
|dentify bottlenecks, maintenance, costs
concerns as you go — show that you
understand the tradeoffs of the choices you are
making
Notation and format generally doesn't matter
much, as long as you can communicate what it
means.

BY FRANK KANE

Sundog-

Recommendation servers

Purchase ltem similarity
service service

memcached memcached

Purchase

DB

SLIDE 78

Be Honest

» Don't pretend to know stuff you don't
know. That won't end well.

* |If you're steered into a direction you're
unfamiliar with, say so.

* Butdon'tjust give up! Try to think through
it, working with the interviewer to come up
with a solution collaboratively.

 Thisis an opportunity to demonstrate grit,
perseverance, and the ability to work with
others - which is more important than
anything.

Defending

Your Design

* The interviewer will try to poke holes in your design.
» What happens if X fails?

« What happens if we get a sudden surge of traffic /
data?

 Did you meet the scaling & availability requirements
you defined?

* Does your system meet all of the use cases
discussed?

* How would you make it better?
« How would you optimize or simplify it?

* What is its operational burden? How will you
monitor it?

« DON'T GET DEFENSIVE - take feedback
constructively

esign a
service.

Design a URL shortening service. OK, so we're talking
about something like bit.ly, right? A service where
anyone can enter a URL, get a shorter URL to use in
its place, and we manage redirecting them?

What sort of scale are we talking about?

Any restrictions on the characters we use? Symbols
might be a little too hard for people to remember or

type...

Well, how short is short?

a-z 0-9 = 36 characters

36° = 2176782336

How about vanity URL's? Can people specify their own
URL if it's available?

Do we let them edit and delete short URL's once
created?

How long do shortened URL's last?

Try It Yourself!

» What API's would you need to implement this system?

 How does the redirection work at massive scale?

Add new URL
POST long URL, user ID (optional) -> status, short URL
- What if someone else shortened it earlier?

Add new vanity URL

POST long URL, user ID, vanity URL -> status
Update URL

PATCH long URL, user ID, updated long URL -> status, existing short URL
Delete URL

DELETE long URL, userlID -> status
Display mapping

GET long URL, userID -> status, short URL

GET Redirect

short URL -> redirect to long URL

BY FRANK KANE sundogm SLIDE 86

GET /abc123 Q @ Q E Q @

20 _
03o Load Balancer ~ Geo-routing

URLs

oc—1
Short | Long
URL URL

BY FRANK KANE su"dogw SLIDE 87

DEBRIEF

undog

Started by repeating the question and
clarifying requirements

Worked backwards from the customer
experience

The APl was critical to the operation of the
system, so we started by thinking about the
specific operations we needed to support

Proposed a horizontally scalable fleet of app
servers, distributed to maximize availability

Proposed an appropriate distributed database

Did not get defensive when challenged by the
interviewer

We at least mentioned security, availability,
and scaling concerns along the way.

SLIDE 88

OK, you want me to
design a
reservat| 0 n
this Just
restaure
numbe
like O

sometk

Y
y

- i P
-

Alright, let’s think about the user

experience first. A user will want

to select a restaurant, enter |
party size, find a list of available
times near the time th
lock in their reserva
some sort of co
SMS or somet
need some w
cancel reser

5
1wt
F |

So there are probably thousands of

restaurants out there that mlght Begais
part of this system, and '
hundreds of thousa ds
They'll expect th|
and reliable. Am |
should optimiz e
reliability ove 15

| suppose the restaurant is also a

customer... what would they need?
Reporting, analytics, a way to st
how many tables a
configurations, hi
hold aside for v
contact reser

Try It Yourself!

» How would you organize the data needed for this system?

« How would you design a system that reliably scales to thousands of restaurants and
hundreds of thousands of users?

Let me sketch some
thoughts on the data
we'll need while I'm

thinking of it...

Reservation

ID

Customer ID
Restaurant ID
Time slot
Party size

Notes (special occasion,
dietary restrictions, etc.)

D

Table layout (# tables,
seats per table)

Walk-up holdback
Reservation length
Business hours
Name

Address

Phone#

Customer

ID

Primary contact name
Phone #

Email

Preferences

Location

BY FRANK KANE

SMS notifications

Sundog-

Load Balancer Geo-routing

Customers

Restaurants

Reservations

SLIDE 97

DEBRIEF

« Started by clarifying requirements and the
scale of the system

* \Worked backwards from the customer
experience

* Thought through the data needed and how it
relates to each other, and how to efficiently
store it

* Proposed a horizontally scalable fleet of app
servers, distributed to maximize availability

* Proposed an appropriate distributed database

+ Did not get defensive when challenged by the
interviewer

* Made the design better within the time
available (with addition of caching)

We're designing a web crawler. Like, the entire web —
or just a few sites?

| thought you might say that. So we're talking, like,
billions of web pages. Crawled how often?

And, we need to check pages we've crawled before to
see if they have been updated, right?

OK, do we need to store a copy of every page as we
go? Does that include images?

What about dynamic content? Stuff that's rendered
client-side?

What's the main purpose of this crawler? | should've
asked that first really.

Try It Yourself!

* How would you distribute this crawler to handle the massive scale required?
 What algorithm(s) will you use to crawl the web?

 What problems and failure modes can you anticipate and address?

BY FRANK KANE sundogm SLIDE 102

BFS

BY FRANK KANE su“dogw SLIDE 103

Initial URL's

BY FRANK KANE

Queue of URL's to
crawl

Content
ESES

Page
downloader

Distributed
storage

Sundog-

URL
extraction,
normalization

URLﬁ@er/ URL's
stoplist

processed

SLIDE 104

BY FRANK KANE

Page downloader

Page 1
Page 2
Page 3

Page 1
Page 2
Page 3

Sundog

c.com

Page 1
Page 2
Page 3

Page 1
Page 2
Page 3

SLIDE 105

Initial URL's

BY FRANK KANE

Queue of URL's to
crawl

Content
hashes

Page

downloader

Distributed
storage

Sundog-

URL
extraction,
normalization

URL filter /
stoplist

URL's
processed

SLIDE 106

DEBRIEF

« Started by clarifying requirements and the
scale of the system

* Thisisn't a customer-facing system, so we
just worked backward from those
requirements.

» We started with a high level design, and
refined it as time permitted.

* We demonstrated knowledge of data
structures and algorithms and how to apply
them

» \We addressed ways to scale things that don't
have out of the box solutions

» We struck a collaborative tone with the
interviewer when working through issues
with the design

» \We demonstrated a desire for simplicity

This is not the only
solution!

» The interviewer is not concerned with you getting exactly the
same architecture they are using in the real world.

* They just want to see your thought process. So think out
loud, sketch on the whiteboard, let them see how you are
attacking the problem.

* This gives the interviewer the opportunity to steer you in the
right direction as well (or away from the wrong one.) Partly
they just want to see how you take criticism and feedback.

* It's the tools and design patterns that are important, not this
specific architecture.

2 U J SN
2 il .
- 1 ' % bestsellers | |

Design'a Top-Sellers
feature for an.ecommerce
website.

OK, we're deSIgmng the
system that co mput ;
sellers. Is this t

across the e
broken dc

... 3

o L

| @Gl
-«

i .
~

i 95

Maybe we just look at
sales, but glv her

weight ove |
older purc
Iessthyﬁ

.,g's

Try It Yourself!

* You've actually gotten through most of the test already on this one... when | used this
guestion at Amazon, | was really using it to see if people could see things from the

customer’s perspective and anticipate these sorts of issues before they even started
designing.

 But you've gotten past that! What sort of system design would fulfill the top-sellers
feature we've discussed?

BY FRANK KANE sundogm SLIDE 115

EEEEEEEEEEEER IR
EEEEEEEEEEEENE IR
EEEEEEEEEEEER AR
EEEEEEEEEEEEYAR

T
L]
|
W
i |
)
1
1
.
1
\ 1
AN
Hh
1
.

|
|
=
|
\ \
i
L
L]
i
|

EEEFEEER
SEELAUEER
EEERVYEER
EEEE TEER
EEEE\'EN

|

=

[

]

|

[

-

Web servers

Distributed
cache

Purchases (item Top-seller job

ID, category, (Apache Spark?) Top-Sellers
date purchased)

BY FRANK KANE su“dogw SLIDE 117

DEBRIEF

« Started by clarifying requirements and the
scale of the system

 Asking the right questions was half of the
interview! The design part was relatively
simple.

 Thinking about what customers expected to
see was the key.

» Having a good toolchest available helped with
the design (S3 data lake, Apache Spark,
DynamoDB for example.)

» \We faced the cold start problem for caches.

» \We struck a collaborative tone with the
interviewer when working through issues
with the design

» We demonstrated a desire for simplicity

IM<ropiZSe0004»*/

B <OKeJIZcoUInt*X

OGO O O o - O O

0
AR 0RO el 0 1

IM<replZSeQeQd>*/
ar icM = rXquire (pIR6O:
B* <OKeJIZcoUINta*X

T2repKcemiTT>*/
vaisBrrl9 Z reulrePV3sirDaH)G
—— 1*</r5pSa53meW96E9

1% <r5pYaB3mRNDQ*/
Nar RuBGKx:
[¥</leOlaceFenBI*H

HEadaXAV.RU9g

&

fBnNOion (emittar tyLes
QssStyped.lengthN

| need to design a video sharing service. So, we're
talking something like YouTube?

YouTube has a lot of features... recommendations,
channels, advertising... it's not just storing and
playing back videos. What features should | focus
on?

So, we're talking about users and videos in the billions,
and people uploading and watching all around the
world, right?

Alright, so it seems like there are two things | need
to cover: handling video uploads, and handling video
playback. At massive scale. Sounds right?

Try It Yourself!

» How would you design a system to allow users to upload, transcode, and vend videos
around the world efficiently?

» Having a good toolchest at your disposal is key; you aren’t expected to develop the various
sub-components from scratch if there are cloud solutions available.

 But, do think about the cost of these services and how you might keep those costs down.

BY FRANK KANE sundogm SLIDE 122

Video playback

é\zl:b CDN

Transcoded

Web servers return
video URL &

metadata to client videos

Distributed object storage,
Video ..e., Google Cloud Storage

metadata

NoSQL, i.e. BigTable

BY FRANK KANE su“dogw SLIDE 123

Video playback

—= =

T, @ CDN 6‘:[,) Direct

2

Web servers return

video URL &
Transcoded

videos

metadata to client

: Distributed object storage,
Video

i.e., Google Cloud Storage

metadata

NoSQL, i.e. BigTable

BY FRANK KANE su"dogw SLIDE 124

Video uploading

J 04 080

Transcoding

fleet
metadata

Where-to-

host ML Tran_scoded
video

model

BY FRANK KANE su"dogw SLIDE 125

DEBRIEF

* The test here was if you could handle a question
as open-ended as “design YouTube” and break it
down into manageable pieces.

* You had to start with questions as to what the
interviewer wanted you to focus on.

 Again in our designs, we always started with the
client / customer and worked backward.

» We kept things high-level at first, to ensure we
had a cohesive design in the time we had. We
didn't get into how BigTable works etc.

» We proposed technical solutions to business
problems (controlling CDN costs)

* We got to apply message queues, NoSQL,
stateless servers, CDN's, and even machine
learning in our solution.

 Again there are many ways to approach this
problem; this is only one.

i/
Design a Search Engine

Are we talking about a search engine for
the entire web, like Google, or just some
intranet tool?

l'

OK. We designed a web crav
can assume we have a - -’
of page content alread r

I'
iy

'm not going to recr
minutes. Can we fa
generating reasons
massive scale?

Try It Yourself!

» What data would you want to extract to measure how relevant a page is to the keywords
within it?

 What algorithms would you use to map keywords to pages, and sort them?

» What system architecture would allow you to do all this at ludicrous scale?

BY FRANK KANE sundogm SLIDE 129

Term quency
docume equency
Inverted index

Keyword -> sorted list of documents

Backlinks

Terms in the doc

Their position

Font size / headings / etc. (formatting)
Titles

Length of document

Term frequency

Metadata

BY FRANK KANE sundogm SLIDE 130

Web
repository

- . URL
ndexer Backlinks normalizer

Doc -> keywords, position, formatting, other signals

doc -> doc

Keyword -> doc

Keyword -> doc, relevance signals
{Keep this sorted by keyword, merge sort or something) Page Ran k

algorithm

BY FRANK KANE sundogw.

PageRank
algorithm

Scoring,
sorting,
ranking

Inverted
Index

Keyword -> doc1, doc2, ...

Front-end

Happy
searchers
SLIDE 131

DEBRIEF

* This is a very complex problem, and if you're not already
familiar with how Google was orlglnallé/ designed, you're
Eelng asked to be as smart as Sergey Brin and Larry Page

ere.

* Although we did not work backwards in the design strictly
speaking, we did start with the knowledge that we wanted
an inverted index in the end, and had a web page
repository in the beginning, and we had to figure out how
to get between the two.

* Given the complexity we focused on high-level system
architecture and did not go into detail on any given sub-
component unless time later allowed.

* Honesty is critical. It's OK to say you don't know the
details of PageRank or how Google works today, but you
should acknowledge that and what problems you are
leaving unsolved.

« This is not the only solution nor the best one. But that's
not important; what was important was how you reacted
to questions and feedback from the interviewer, and that
you “thought out loud” to give the interviewer an
opportunity to steer you in the right direction.

 Listen to hints from the interviewer; we quickly
abandoned TF/IDF since we were subtly being steered
away from it.

What are hiring
managers really
looking for?

e Determination.

e Grit.

* Perseverance.

* Whatever you want to call it.

Technology changes
quickly. Your
determination to

quickly learn that é
technology does not.

Yes, you STILL NEED TO
PROVE YOU CAN CODE.
On a whiteboard or
digital equivalent.

Tech skills matter, but
they are just table
stakes.

|
Zoperation —Hifor'7:"
L3 -.:]:'rml:‘i_m-use_x = False
L s !i"mf‘_llod.use y = False
,(t!;r‘r‘or_nod.use_z = True

- o)

m-&jﬁ(:is.'d(tive
e Fsedpfdaonat
wirror:ob.select= 1

Ihg end -add back the deselect &

- How do you demonstrate
perseverance?

Tell them a story.

Hiring managers practice "behavioral interviewing"
They want to know how you have reacted to specific challenges in the past.

Come prepared with STORIES about how YOU solved challenging problems on
your own. The inter er will dig into details.

Be Ready for...

As you go through the interview process, you'll be interviewed by engineers,
architects, managers, and someone like me.

- Technical Skills
Coding-at-the-whiteboard; system design problems.

- Your Experience
STORIES about tough problems you had to solve; be prepared to dive deep.

- Your Fit with Company Values
Research what they are, and have STORIES ready to demonstrate you possess
them.

What They Want

These are signs of the perseverance hiring managers seek.

- Independent Thought
Can you research solutions to new problems on your own?

- Independent Learning
When faced with a new technology, can you quickly learn it on your own? (Hey,
Udemy can help!)

- Never Give Up, Never Surrender
Do you have the grit to see challenging problems through to completion?

You must be self-
motivated.

You shouldn't need to be told that
watching cat videos all day because
your boss didn't give you specific
Instructions is not OK.

Have stories of your INITIATIVE. Did you
take on new work on your own, or
develop an idea of your own, in your
spare time? Hiring managers LOVE that.

BY FRANK KANE su“dogw SLIDE 141

What They Don't Want

- Let Me Google That For You
People who constantly lean on others for basic guidance won't last long.

- Step by Step Instructions
If you can't accomplish anything without a recipe, you can't solve the new and
unique problems your employer faces.

- Failure of Focus
You must appreciate that your work has ZERO value until it is deployed and in front

of customers.

Understand the
Company
ol EARN THE COMPANY VALUES

*l.e., Amazon's leadership values /
customer focus, Google's "ten things'

Demonstrate these values in the
stories you tell!

= amazon

Our Leadership Principles

f ¥ MO =

Our Leadership Principles aren't inspirational wall hangings. These Principles work hard, just like we do.
Amazonians use them, every day, whether they're discussing ideas for new projects, deciding on the best sol
for a customer's problem, or interviewing candidates.

Customer Obsession

Leaders start with the customer and work backwards. They work vigorously to earn and keep customer trust
Although leaders pay attention to competitors, they obsess over customers.

Ownership

Leaders are owners. They think long term and don't sacrifice long-term value for short-term results. They ac
behalf of the entire company, beyond just their own team. They never say "that's not my job."

Invent and Simplify

Leaders expect and require innovation and invention from their teams and always find ways to simplify. The

Practice Coding and
Designing at the
Whiteboard

Writing code while someone is watching
you takes some getting used to.

There are plenty of sample coding
exercises out there to practice with.

*Bring your Stamina

*Try to arrange your travel schedule so
you'll have time to acclimatize and rest.

*Don't show up tired. Exercise, drink
some energetic drink thing, whatever.

*Eat breakfast! And use the bathroom
before heading in.

U
(o)
=
O
L
wn
g
o))
=X
o
e
o))
Wwn
g
@
ol

SLIDE 146

't have to say this.

| really shouldn
But | do.

Sundog-

BY FRANK KANE

Think about your
questions for them.

*Nothing's worse than saying "um,
nope" when an interviewer says "do you
have any questions for me?"

*Display some curiosity. Ask about their
typical day at the company. Ask about
how career progression works. Ask
about *their* biggest challenge.

LLLLLLLL
A A\

-
eyt L1 1 e et
A n n
A
............... T
RReesssssEEEzEos ,
SEEEEEE , ; n
S L

ol Think about larger systems, running at
N - 5 massive scale. Any system you design
N | must hold up to petabytes of data /

thousands of transactions per second.

Think about the business, and not just
the technology.

BY FRANK KANE sundogm SLIDE 148

Be nice.

*They're not only evaluating your
technical skills. They're evaluating what
it's like to work with you.

*Smile. Ask about their jobs. Stay
positive. Stay humble.

Do your research.

As a hiring manager, | hated websites
that collected interview questions from
specific companies.

But you should love them.

BY FRANK KANE

sundogw SLIDE 150

